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Pulse Solutions of Some Hydrodynamical Problems:
Existence and Stability

A.L. Afendikov
Keldysh Institute of Applied Mathematics, Moscow, Russia

We consider several hydrodynamic problems in unbounded domains where in the
vicinity of the instability threshold the dynamics is governed by the generalized
Cahn-Hilliard equation. For time-independent solutions of this equation, we recover
Bogdanov-Takens bifurcation without parameter in the 3-dimensional reversible system
with a line of equilibria. This line of equilibria is neither induced by symmetries, nor
by first integrals. At isolated points, normal hyperbolicity of the line fails due to
a transverse double eigenvalue zero. In case of bi-reversible problem, the complete
set B of all small bounded solutions consists of periodic profiles, homoclinic pulses,
and a heteroclinic front-back pair (Asymptotic Analysis 60 (3, 4) (2008), 185-211).
Later the small perturbation of the problem where only one symmetry is left was
studied. Then B consists entirely of trivial equilibria and multipulse heteroclinic
pairs (Asymptotic Analysis, Volume 72, No. 1-2, 2011, pp. 31-76). Our aim is to
discuss hydrodynamic problems, where the reversibility breaking perturbation can’t
be considered as small. We obtain the existence of a pair of heteroclinic solutions and
partial results on their stability.

Metrical Properties of Typical Homeomorphisms
of Cantor Sets

O.N. Ageev

Moscow State University, Moscow, Russia

Each homeomorphism of the Cantor set K has at least one invariant probability
measure, creating a measure-theoretical dynamical system. By fixing some measure g,
we get a subset of u-preserving homeomorphisms, forming a Polish space in certain
induced topology. We give the complete metrical and some topological descriptions of
typical p-preserving homeomorphisms for natural . We also treat the imbeddability of
such homeomorphisms in free actions of different groups G (Z < G), by u-preserving
transformations and homeomorphisms.

Mixed Problems and Crack-Type Problems
for Strongly Elliptic Second-Order Systems
in Domains with Lipschitz Boundaries

M. S. Agranovich

Moscow Institute of Electronics and Mathematics, Russia

We consider two classes of problems for a strongly elliptic second-order system in
a bounded n-dimensional domain with Lipschitz boundary, n > 2. For simplicity, we

3



assume that the domain Q = Q7 lies on the standard torus T" and that the Dirichlet
and Neumann problems in QT and in the complementary domain Q= are uniquely
solvable.

1. Mixed problems. In the simplest case, the boundary I' of Q is divided into two
parts 'y and T'y; by a closed Lipschitz (n — 1)-dimensional Lipschitz surface, with
the Dirichlet and Neumann conditions on I'; and on I's respectively. The problem
is uniquely solvable in the simplest spaces H* (with the solution in H(Q)) and
(the regularity result) in some more general Bessel potential spaces H, and Besov
spaces B,. Equations on I' are obtained equivalent to the problem. For this, we use
analogs Ny and D, of the Neumann-to-Dirichlet operator N and the Dirichlet-to-
Neumann operator D on parts I'y and I'; of T

The operators N; and D, are connected with Poincaré-Steklov-type spectral
problems with spectral parameter on a part of . In the selfadjoint case, the eigen-
functions form a basis in the corresponding spaces, and in the non-selfadjoint case
they form a complete system. If " is almost smooth (smooth outside a closed subset of
zero measure), then the eigenvalues of self-adjoint problems have natural asymptotics.

2. Problems with boundary or transmission conditions on a non-closed surface S,
which is a part of a closed Lipschitz surface I'. In elasticity problems, S is a crack, and
in problems of acoustics and electrodynamics, it is a non-closed screen. The results
are similar to those indicated above. The corresponding operators are restrictions Ag
to S of the single layer potential-type operator A and Hg to S of the hypersingular
operator H on I'. For the corresponding spectral problems, the results are similar to
those indicated above.

On Behaviour of Trajectories Near Hyperbolic Sets
D. V. Anosov

Steklov Mathematical Institute, Moscow, Russia

Let F and F’ be hyperbolic sets of diffeomorphisms f and f’ respectively. Suppose
that the restrictions f|r and f’|ps are topologically conjugated by a homeomorphism h.
Then a restriction of f to an invariant set comprised by all trajectories of f that are
close to F', and a restriction of f’ to a set of all trajectories of f’ that are close to F”,
are conjugated by a homeomorphism H, which is an extenstion of A.

Parabolic Obstacle-Type Problems
with Contact Points

D. E. Apushkinskaya
Smirnov Scientific Research Institute in Mathematics and Mechanics,
Saint-Petersburg, Russia

Many problems in physics, biology, finance, industry, and other areas can be
described by partial differential equations that exhibit a priori unknown sets such
as moving boundaries, interfaces, etc. The study of such sets, also known as free
boundaries, often plays central role in the understanding of these problems.

4



In this talk we present a short survey on the special class of the parabolic free
boundary problems, which is called the obstacle-type problems. The exact mathematical
formulation is as follows:

Let function u and an open set @ C R’™" solve the problem

Hlu] =xo in QF,
u=|Dul=0 in QF\Q, (1)
u=0 on {IL‘1:0}QQ1,

where H = A — 0, is the heat operator, yq denotes the characteristic function of €,
Q1 is the unit cylinder in R**!, Qf = Q1 N {21 > 0}, and the first equation in (1) is
satisfied in the sense of distributions. We discuss different aspects of problem (1) near
a fixed boundary, such as the optimal regularity of solutions, the study of blow-ups,
and the regularity of the free boundary.

The talk is based on works in collaboration with Nina Uraltseva, Henrik Shahgholian,
and Norayr Matevosyan.

Dynamics of Stationary Structures in a Parabolic
Problem with Reflected Spatial Argument

E.P. Belan

Vernadskii Taurida National University, Simferopol, Ukraine
We consider the boundary problem

Opu(x,t) + u(x,t) = DOpgu(x,t) + K(1 + ycosu(—x,t)), t >0, (1)
Oru(=1,t) = d,u(l, t) = 0. (2)

Problem (1), (2) models the dynamics of phase modulation u(z,t) of the light that
passed through a thin layer of a nonlinear Kerr-type medium with a reflection transfor-
mation in the feedback loop in a one-dimensional approximation. Here D > 0, K > 0,
and 0 < v < 1. We fix the smooth branches w = w(K) of solutions of the equation
w = K(1+vycosw). We fix some K such that A = A(K) = —K~vysinw(K) < —1. We
T, =D
denote I; = 5(1—_H) /2,
Theorem 1. There is some 6 > 0 such that if we have 0 < [—1y < §, then problem
(1), (2) has the following two solutions:

D7(l—ll) % T
uy :wi(cll:{’ > sm—2lx+0(l—ll),

where
A

~ 4tanw

((1 —AN) - %(3 + 5A)1>+g.

Cc1 =

Solutions uli are exponentially stable.
In the case considered when |cosw| < 1, it is shown that solutions ui preserve

its stability with increasing ! when A > —2. If we have A < —2, then solutions
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uf loses stability with increasing [. Other stationary structures bifurcate from w as

unstable solutions. However, they acquire stability with increasing {. If A > —2, then
the stability acquired by structure is retained with the further increase in [. If we
have A < —2, then each stationary structure retains stability in some variational
interval [. After leaving the mentioned interval the instability index of the structure
being considered unbounded increases with | — oo. We show that the number of
stable stationary structures increases with [ — oc.

References
[1] Belan E. P. Dynamics of stationary structures in a parabilic problem with reflected
spatial argument, Kibernetika i Sistemnyi Analiz, 5, p. 99-111 (2010).

From Blow-up to Extinction for Solutions
of Some Nonlinear Parabolic Equations

Y. Belaud

Université Francois-Rabelais de Tours, France

Joint work with Carmen Cortédzar (Pontificia Universidad Catélica de Chile).

We consider a bounded regular domain Q and the following equation:
u — Au = a(z) u? — b(z)u? on Q, (1)
a,b>0ae., ¢g>q >1,

for the Dirichlet boundary condition.
We try to characterize the behaviour of nonnegative solutions: do solutions have
blow-up or extinction in a finite-time if functions a and b are regular or singular?
This work is in progress.

A Direct Proof for the Selfadjointness
of the Harmonic Oscillator

Ph. Berndt

Free University of Berlin, Germany

The harmonic oscillator is an important model system in quantum mechanics: using
Taylor Expansion, stable equilibria of other systems can be locally expressed using its
q*-potential. From a mathematician’s point of view, the oscillator is an operator

H:L? — L? H¢ =AY +q¢*, domH = {3 € H*: ¢*¢ € L*}.

Operators of this kind are well understood. However, the theory covers a wider class
of operators, making it hard for undergraduate students to understand it. Courses in
functional analysis often only teach perturbation theory for Kato-Rellich-type and/or
compact perturbations.



To encourage lecturers to also teach this specific example in their courses, I
will present a simple extension to the ladder-method (typically used by physicists
to determine eigenfunctions of H), showing selfadjointness and thus completing the
operator’s spectral analysis.

Based upon an idea by Caroline Lasser, TU Miinchen, and the bachelor theses of
both Feliks Niiske, FU Berlin, and me, I will also point out how the oscillator can be
used to descriptively demonstrate some deeper results.

Regularity Estimates for Hamilton—-Jacobi Equations
and Hyperbolic Conservation Laws

S. Bianchini
International School for Advanced Studies, Trieste, ltaly

Consider the Hamilton-Jacobi equation
ur+ H(Vu) =0

with convex Hamiltonian. In spite of the fact that the Hamiltonian is only convex,
and thus the characteristic vector field d is in general not differentiable, we will show
that the vector field d has enough regularity to allow a change of variable formula.

Applications of this fact are a proof of the Sudakov theorem in optimal transporta-
tion theory and a solution of a conjecture of Cellina. In the case where H is uniformly
convex, we will show that the solution is not only semiconcave, but its first derivative
is SBV.

We will also consider the hyperbolic system

Ut+f<u):1::0

and show that the direction of the characteristics are SBV.

Decay Estimates and Singularities Hamilton—Jacobi
Equation

M.-F. Bidaut-Veron

Université Francois-Rabelais de Tours, France

This work is made in collaboration with Anh Nguyen Dao.

Here we consider the nonnegative weak solutions of the parabolic problem
u — Au+|Vul?=0 in Qx(0,7), (1)

where ¢ > 1, Q = RY or Q is a bounded domain of RY, with irregular initial data ug.

We show that a decay property and a regularizing effect occur for any weak
solution w in RN, when ug € L" (RY), r > 1, or ug is a bounded Radon measure.
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We give some extensions of these regularizing properties to quasilinear operators .4
under weak assumptions of coercivity.

We also study the problem in € with an eventual punctual singularity at (x,t) =
(0,0). We prove that for ¢ > %—ﬁ, the singularity is removable. In particular there
exists no very singular solution (V.S.S.) and no solution with a Dirac mass at (0,0),

showing that the well-known existence results for ¢ < %—ﬁ are optimal.

Classical Solution of the Singularly Perturbed
Free-Boundary Problem for the System
of the Parabolic Equations

G. . Bizhanova
Institute of Mathematics of Ministry of Education and Sciences, Kazakhstan

Multidimensional two-phase free-boundary problem for the system of the parabolic
equations with two small parameters x > 0 and s > 0 at the principal terms in the
conditions on the free boundary is considered. The unique solvability and coercive
estimates of the solutions of the problems with kK > 0, 5 > 0; Kk =0, 3 > 0 and kK = 0,
2 = 0 are obtained in the Holder spaces locally in time.

Elliptic Problems
Coming from Supercollider Simulation

Ya. L. Bogomolov, E.S. Semenov, and A.D. Yunakovsky
Institute of Applied Physics, RAS, Nizhniy Novgorod, Russia

Electron (positron) accelerating structures are attractive to be fed with a wave
flow converging onto the structure axis [1]. A proper structure proposed for future
electron-positron colliders might represent a periodic set of coaxial radial-corrugated
metallic discs exposed to a quasi-cylindrical wave flow [2]. Some symmetric model
elliptic problems (boundary, inverse spectral, scattering) concerning synthesis of the
optimal structure were considered earlier in [3].

The two main functional parts of the structure considered are (a) the cylindrically
symmetrical paraxial working space, where the electromagnetic field interacts with
injected particles, and (b) the non-symmetrical peripheral feeding region, where the
incident electromagnetic wave is transformed into a convergent and properly phased
symmetrical wave flow. Thus, the fundamental model problem arises: to transform
the non-symmetrical wave flow coming from the angle feeding sector into the field
structure as close to the convergent cylindrical wave as possible.

The model problem (in a whole space) is governed by the Helmholtz equation
with an alternating wave number for various parts of the structure accompanying by
radiation conditions in infinity together with continuous boundary conditions. To find
an unknown solution, the method of discrete sources is used
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Bianchi Cosmologies, the BKL Conjecture,
and the Tumbling Universe

J. Buchner
Free University of Berlin, Germany

In mathematical cosmology, one of the longstanding open questions is the structure
of the initial singularity (“big bang”) of the Einstein Equations. According to a con-
jecture of Belinskii, Khalatnikov, and Lifshitz (BKL) from the 1970s, the approach
is vacuum-dominated, local, and oscillatory (labelled “Mixmaster” or the “Tumbling
Universe”). This “BKL-picture” is supported by many heuristic and numerical calcula-
tions, but mathematical proofs exist only in very special cases. One important case are
the spatially homogeneous Bianchi spacetimes (where the Einstein Equations reduce
to ODEs), and even here the picture is far from complete, especially from a dynamical
systems perspective.

One reason why the rigorous mathematical analysis of these ODEs is so difficult
is the appearance of solutions with chaotic transient behavior described by dynamics
of subshift type, which means that a dense set of periodic orbits as well as dense
non-periodic orbits arise. This chaotic dynamics takes place near a circle of equilibria
and its heteroclinic connections, which lead to the formation of (finite and infinite)
heteroclinic chains. The main questions is how real solutions of the ODEs can be
approximated by these (formal) heteroclinic chains when approaching the big bang.
Another complication comes from the fact that naive linearization techniques fail due
to the center direction that arises as a circle of equilibria plays a fundamental role in
the dynamics.

We will discuss the current state of the art of rigorous convergence results
in Bianchi cosmologies, where an emphasis will be put on those models that are
important for more general PDE cosmological models. This can be seen as a first
step towards making the BKL-picture more rigorous. According to the latter, the
chaotic oscillations in Bianchi models are not only relevant for the (highly symmetric)
spatially homogeneous cosmologies, but actually (generic) solutions to the full Einstein
Equations are believed to have the same approximate behaviour — a Tumbling Universe
at birth.



Elliptic Functions, Differential Equations,
and Dynamical Systems

V. M. Buchstaber

Steklov Mathematical Institute, Moscow, Russia

Denote by & the space of the universal bundle of elliptic curves with the space
of parameters go, g3 as base, and as fiber over the point (go,g3) the corresponding
elliptic curve in the standard Weierstrass form with ¢ as coordinate. The field of
Abelian functions of ¢ on &y is determined by the Weierstrass function o(¢; ga, g3),
which is a section of the linear complex bundle over &. The Weierstrass function
o = p(t;g2,93) = —(Ino(t; go,g3))” determines a birational equivalence & — C3 :
(t,92,93) — (p, ¢, 9"), by which the differentiation along the fiber of the bundle &
(the differentiation of functions along ¢) induces a classical algebraic dynamical system
on C3. The algebra of differential operators along t, g2, and g3, which annihilate the
o-function, is extracted from classical works and leads to a solution of the well-known
problem of differentiation of elliptic functions along parameters and, correspondingly,
the problem of differentiation of a dynamical system solution along initial data. Using
the generators of this algebra, we get dynamics in the space of parameters g2, gs,
and on this basis the solution of the heat equation in terms of the o-function. The
dynamics are determined by a solution of the Shazy equation.

Let & be the space of the bundle with the space of parameters go, g3 as base,
and the fiber over the point (g2, ¢g3) the corresponding elliptic curve with coordinate
t and a marked point 7. We obtain the bundle & — & with the universal bundle
of elliptic curves with parameter 7 as base, and as fiber the elliptic curve with ¢
as parameter. The field of Abelian functions of ¢ and 7 on & is determined by the
function o(7; g2, g3) and the Baker-Akhiezer function ®(¢,7, g2, 9g3), which is a section
of the linear complex bundle over & . The function ®(t, 7, g2, g3) gives a solution of the
Lame equation. It is a common eigenfunction of the Sturm-Liouville operator L2 with
the potential 2p(t; g2, g3) and a third-order differential operator L3, which commutes
with L£5. The commutativity condition for the operators £5 and L3 is equivalent to
the condition that the function g is a solution of the stationary KdV equation.

We give differential equations on ®(¢,7,¢ga,g3), describing its dependence on pa-
rameters go, g3. These equations completely determine the operators of differentiation
of elliptic functions along the parameters. The function P = —(In ®(¢, 7, g2,93))" is
elliptic along ¢t and 7 and symmetric with respect to these variables. Using a differential
equation on this function, we describe the algebraic surface W in C5 and a birational
equivalence & — W, which is fiberwise with respect to a projection C® — C3.
As a corollary, we obtain an algebraic dynamical system in C® integrable in elliptic
functions. We obtain three integrals of this system. We give differential equations that
describe the dependence of a solution of the dynamical system on the initial data.

New results presented in the talk were obtained in recent joint works with E. Yu.
Bunkova. The talk is addressed to a wide audience. Main definitions will be introduced
during the talk.
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On the Vershik—Kerov Conjecture Concerning the
Shannon—-McMillan-Breiman Theorem for the
Plancherel Family of Measures on the Space of Young
Diagrams

A.l. Bufetov
Steklov Mathematical Institute, Moscow, Russia

Vershik and Kerov conjectured in 1985 that dimensions of irreducible representati-
ons of finite symmetric groups, after appropriate normalization, converge to a constant
with respect to the Plancherel family of measures on the space of Young diagrams.
The statement of the Vershik—Kerov conjecture can be seen as an analogue of the
Shannon-McMillan-Breiman theorem for the non-stationary Markov process of the
growth of a Young diagram. The limit constant is then interpreted as the entropy
of the Plancherel measure. The main result of the talk is the proof of the Vershik-
Kerov conjecture. The argument is based on the methods of Borodin, Okounkov, and
Olshanski.

The talk is based on the preprint arXiv:1001.4275

On Expansions of Differential Operators
in Banach Spaces

V. P. Burskii
Institute of Applied Mathematics and Mechanics, NASU, Donetsk, Ukraine

[t is well-known that the usual theory of partial differential operators expansions
(Vishik, Hormander, Berezansky, Dezin) or, which is equivalently, the general theory
of boundary value problems has been building in the Hilbert space Ly(£2). In this
report a starting scheme of theory building for expansions in Banach spaces will be
brought and initial results of the theory will be obtained.

In a bounded domain © C R™ we consider expansions of operator (initially given
in the space C*(Q)) LT = Y aq(xz)D*, D~ = (_aiilm‘ and its formal adjoint

o<t

operator LT = > D%(a(x) -), where an(z) is an N x N*t-matrix with entries
jal<t

(aa)ij € C(2) and a},(z) is the adjoint matrix.

For p > 1 and ¢ = p/(p — 1), we introduce graph norms |lullz, = |ullz, ) +
I LullL, ), llullz.g: [ull+ p, and [[ul|z+ 4. Then we build minimal operators Lyo, Lo,
L;O, and L;’O with its domains understood as the closures of C§°(€2) in corresponding
graph norms and maximal operators L, := (L}))*, Ly := (L)*, L}, and L] . Each
operator Lpp = Ly|p(r,,) With property D(Ly0) C D(Lp,p) C D(L,) is called
an expansion (of L,g), and the expansion L,z : D(L,g) — [Lp(Q)]N+ =: B is
called solvable if there exists its continuous two-sided inverse operator L;E{, B —
D(Lypp), LysL,z =idpy, LygLys =idp(L, ).

Here, as usually, one introduces the notion of the boundary-value problem in the
form L,u = f, Tu € B, where a subspace B in the boundary space C(L,) =:

11



D(Ly,)/D(Lyo) (' : D(Lp) — C(Lp) is a factor-mapping) gives a homogenous bo-
undary-value problem similar the Hormander definition. Two Vishik conditions of
the Hilbert case turn to four conditions in the Banach case: the operator L,q has
a continuous left inverse (condition (1,)) and the same refers to the operators Ly
(condition (1)), Ly, (condition (1)), and L, (condition (1f)). Then we prove the
theorems:

Theorem 1. The operator Lyy has a solvable expansion if and only if conditions
(1) and (1)) are fulfilled.

Theorem 2. Under conditions (1,), (1,}) we have a decomposition D(L,) = D(Lyo)®
ker L, ® W, where W), is a subspace in D(Ly) such that Ly|w, : W, — ker L} is an
isomorphism.

Theorem 3. Under conditions (1,), (1) any solvable expansion L,p can be de-
composed into a direct sum Lyp = Lpo & L9, where LOs : B — ker Lg is an
isomorphism.

Theorem 4. Under conditions (1,), (1) any linear subspace B C C(L,) such that
(1) T,'BNkerL, = 0 and (2) there exists operator M, : kerLgol — D(L,) with
the properties: (a) L,M, =id|,, Lo and (b) ImM, C F;IB, generates a well-posed

boundary-value problem (i.e. a solvable expansion L, with domain D(L,5) =T'"'B).

References

[1] Burskii V.P. Investigation methods of boundary value problems for general
differential equations. — Kiev: Naukova Dumka, 2002 [In Russian].

[2] Burskii V.P. and Miroshnikova A.A. On expansions of differential operators in
Banach spaces, Nonlinear boundary value problems, 19, 5-16 (2009).

Glaeser-Type Interpolation Inequalities

I. Capuzzo Dolcetta
Sapienza University of Rome, ltaly

[ will present some recent results, in collaboration with A. Vitolo, concerning
pointwise gradient estimates for nonnegative viscosity solutions of fully nonlinear
second order elliptic equations. The results extend to a quite general nonlinear setting
those of Yan Yan Li and Louis Nirenberg [Progress in Nonlinear Differential Equations
and Their Applications, 66 (2005)] about the so-called Glaeser estimate for solutions
of linear second-order elliptic equations.
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Homogeneous Dynamics for Theta Sums
and Applications

F. Cellarosi
Princeton University, Princeton, USA

I shall explain how limit theorems for theta sums can be obtained dynamically, by
studying the equidistribution properties of horocycles under the action of the geodesic
flow in a suitably defined hyperbolic manifold. I shall also present some applications
to the study of auto-correlations in certain quantum mechanical systems.

Solvability of a Generalized Buckley—Leverett Model

N.V. Chemetov
CMAF / University of Lisbon, Lisbon, Portugal

W. Neves

Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

We propose a new mathematical modelling of the Buckley-Leverett system, which
describes the two-phase flows in porous media. We prove the solvability of the initial-
boundary value problem for a deduced model

du+div(v g(u)) = 0, 1)
TOv —VvAvV+ h(u)v = —Vp, div(v) =0, (2)

where u = u(t,x) and v = v(¢,x) are the saturation and the total velocity of the
two-phase flow. The parabolic/elliptic-type equations (2) are a generalized Darcy Law
(Darcy-Brinkman law for 7 # 0 / Darcy—Forchheimer law for 7 =0 ).

In order to show the solvability result, we consider an approximated parabolic-
elliptic system. Since the approximated solutions do not have ANY type compactness
property, the limit transition is justified by the kinetic method [1-3]. The main issue is
to study a linear (kinetic) transport equation instead of the original nonlinear system.

References

[1] Chemetov N.V. and Neves W. The generalized Buckley-Leverett
System.  Solvability, submitted to Arch. Rational Mech. Anal.,
http://arxiv.org/abs/1011.5461

[2] Chemetov N.V. and Arruda L. L_p-Solvability of a Full Superconductive Model,
Nonlinear Analysis: Real World Applications, published online, 2011.

[3] Chemetov N.V. Nonlinear Hyperbolic-Elliptic Systems in the Bounded Domain,
Communications on Pure and Applied Analysis, 10, Ne 4, 1079-1096 (2011).
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Global Dynamics
for Some Class of Fluid—Plate Interaction

I. D. Chueshov

Kharkov National University, Kharkov, Ukraine

We study asymptotic dynamics of a coupled system consisting of linearized 3D
Navier—Stokes equations in a bounded domain and the classical (nonlinear) elastic
plate equation.

We consider two models for the plate oscillations:

(a) the model which account for transversal displacement on a flexible flat part of
the boundary only, and

(b) the model for in-plane motions on a flexible flat part of the boundary.

In the latter case the main peculiarity is the assumption that the transversal
displacements of the plate are negligible compared with in-plane displacements. This
kind of models arises in the study of blood flows in large arteries.

For both cases our main results state the existence of a compact global attractor
of finite dimension. Under some conditions this attractor is an exponentially attracting
single point. We also show that the corresponding linearized system generates expo-
nentially stable Cy-semigroup. We do not assume any kind of mechanical damping in
the plate component. Thus, our results mean that dissipation of the energy in the fluid
due to viscosity is sufficient to stabilize the system.

In the case (a) the result has been obtained in collaboration with I. L. Ryzhkova.

Semilinear Hyperbolic Functional Differential
Problem on a Cylindrical Domain

W. K. Czernous

Institute of Mathematics, University of Gdansk, Poland

We consider the initial-boundary value problem for a semilinear partial functional
differential equation of the first order on a cylindrical domain in n + 1 dimensions.
Projection of the domain onto the n-dimensional hyperplane is a connected set with
boundary satisfying certain type of cone condition. Using the method of characteristics
and the Banach contraction theorem, we prove the global existence, uniqueness,
and continuous dependence on data of Caratheodory solutions of the problem. This
approach covers equations with deviating variables as well as integrodifferential equa-
tions.
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On a Spectral Problem for an Ordinary Diiferential
Operator with Integral Conditions

K. A. Darovskaya

Peoples’ Friendship University of Russia, Moscow, Russia

A second-order ordinary differential equation with a spectral parameter and integral
conditions is considered. An a priori estimate of the solution for sufficiently large
values of the parameter is obtained and spectral properties of the corresponding
operator are studied.

Optimization of Steady State
of Forest Management Model
A. A. Davydov

Vladimir State University, Vladimir, Russia
International Institute for Applied Systems Analysis, Laxenburg, Austria

A.S. Platov

Vladimir State University, Vladimir, Russia

Choosing a measurable control w, 0 < u1(l) < u < ue(l), we optimize the steady
state solution of the forest model [1]
Ox(t.) | dgll,alt, ))o(t,])
ot ol

= —m(l,z(t,.)x(t,1), (1)

where x := x(t,1) is the density of biomass of size I at the moment ¢, m(l, z(¢,.)) =
w(l,z(t,)+u(l,z(t,.)), g and u are rates of the biomass death and growth respectively,
u is the biomass portion harvested at size [, and L is the size of the clear-cutting.
We assume that z(¢,0) = flf r(1)aP(t,1)dl + p(t), where Iy > 0 is the minimum
reproductivity size, 8 is an elasticity coefficient, r,r = r(l), is the rate of biomass
reproductivity at size [, and the rate is zero and greater than zero if 0 <! < Iy and
lo <1 < L respectively.

We show that under reasonable assumptions on the model parameters every
nonzero solution (1) converges to a steady-state solution, for which the biomass
density does not depend on time, i.e. z = x(1), if p(t) = po > 0, g = g(1), p = m(l)
and w = wu(l). That reduces the optimization problem to the selection of control w,
maximizing profit fOL w(De(D)x(l)dl — poco on this solution. Here ¢, ¢ = ¢(1), and ¢ are
the aggregated prices of harvested biomass at size [ and biomass planting at size 0,
respectively. Under reasonable assumption on the model parameters we prove that the
optimal solution exists and is unique. Also, we find a necessary optimality condition
being similar to the condition in the paper [2].

The work was completed by partial financial support of RFBR (Ne 10-01-91004-
ASF-a) u ADTP HSSPD (Ne 2.1.1/12115) grants.
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On the Existence
of Wheeler—Feynman Electrodynamics

D.-A. Deckert
University of California, Davis, USA

The equations of Wheeler—Feynman electrodynamics are given by a set of functio-
nal-differential equations involving state-dependent retarded and advanced arguments
of unbounded delay. In the case of two particles of equal charge and when the motion
is restricted to a straight line G. Bauer proved the existence of solutions which are
characterized by their asymptotic properties. In a joint work with G. Bauer and D.
Diirr we studied the existence of solutions for given Newtonian Cauchy data for NV
charges without geometrical restrictions in three dimensions. Neglecting collision
singularities, we show existence of charge trajectories which fulfill the Wheeler-
Feynman equations on arbitrary large time-intervals. As a byproduct we give a simple
proof of the existence of solutions to the Synge equations on the time half-line.

New Entire Solutions
to Semilinear Elliptic Equations

M. del Pino
University of Chile, Santiago, Chile

We will survey some recent results on the construction of entire solutions of
semilinear elliptic equations. We will mostly focus on the construction of families of
solutions to the Allen-Cahn equation of phase transitions, whose level sets suitable
scaled concentrate around a given minimal surface. To do so, we introduce an infinite-
dimensional form of Lyapunov-Schmidt reduction suitable for this and several related
questions.
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Spectral Problems of Waveguide Theory
and Keldysh Operator Pencil

A. L. Delitsyn

Moscow State University, Moscow, Russia
Maxwell equations
rotE = iku(z,y)H, rotH = —ike(z,y)E, (1)

dive(z,y)E =0, divp(z,y)H =0 (2)

are considered in a cylindrical domain @ = {(z,y) € Q, 2 € (—00,0)}. The investiga-
tion of such solution as E = E(z,y)e*, H = H(x,y)e""* leads to a spectral problem
where ~y is an eigenvalue and E(z,y), H(x,y) are eigenvectors. Different formulations
of the problem were considered when the system of equations (1) was applied for
reduce Maxwell equations to a boundary problem for second-order equations [1-3].
The proof of completeness of the eigenvectors may be done only for some special
cases when we use such formulations. In [4,5], we suggest to use another approach
for studying this problem, connected with system (2) and equations of system (1) with
d derivatives. This permits us to derive the problem of eigenvectors completeness to
the consideration of a boundary problem for equations

—grad, p~‘div, B, — k*¢B| —ikerot | E, = —~*u" !B, (3)

—ikrot e 'B| —div, e tgrad, E. = —y%*¢cE., (4)

where D =¢FE,, B; = puH . The investigation of the spectral problem for equations
(3)-(4) may be reduced in the appropriate functional space to the application of Keldysh
theory of operator pencils. Now we prove the completeness of eigenvectors of another
formulations which founded on the mentioned theorem.
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The Solvability of Differential Equations

N. Dencker
Lund University, Lund, Sweden

It was a great surprise when Hans Lewy in 1957 presented a non-vanishing
complex vector field that is not locally solvable. Actually, the vector field is the
tangential Cauchy-Riemann operator on the boundary of a strictly pseudoconvex
domain. Hormander proved in 1960 that almost all linear partial differential equations
are not locally solvable, because the necessary bracket condition is non-generic. This
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also has consequences for the spectral instability of non-selfadjoint semiclassical
operators and the solvability of the Cauchy problem for non-linear analytic vector
fields.

Nirenberg and Treves formulated their famous conjecture in 1970: that condition
(U) is necessary and sufficient for the local solvability of differential equations of
principal type. Principal type essentially means simple characteristics, and condition
(¥) only involves the sign changes of the imaginary part of the highest order terms
along the bicharacteristics of the real part.

The Nirenberg—Treves conjecture was finally proved in 2003. We shall present
the background, the main results, and some generalizations to non-principal type
equations and systems of differential equations.

On Continuous Invertibility and Fredholm Property of
Differential Operators with Multivalued Impulse
Eifects
V. B. Didenko

Voronezh State University, Voronezh, Russia

Let X be a Banach space over the field R or C. Let End X be the Banach algebra
of all endomorphisms of the space X. Let us consider a segment [tg, t2] and a point ¢;
from this segment. We denote by the symbol C' = C([to, 2], X) the Banach space of
all functions that are continuous on the sets[to,¢;] and (¢1, t2] and have finite left-hand
limit 2% (#;) at the point ¢;. We endow this space with the norm

[z]| = sup [[z(t)]]-
t€[to,t2

The symbol A denotes the set [tg,t2] X [to,t2]. A map U : A — End X is called a
(strongly continuous) family of evolution operators on [tg, to] if the following conditions
are fulfilled:

(1) U(t,t) =1 is the identity operator for all ¢ € [to, to];
(2) U(t,s)U(s,7) =U(t,T) Tor all ¢,s,7 in [tg,ta];
(3) the map (t,s) — U(t, s)x : [to, ta] X [to,t2] — X is continuous for all z € X.

Let A and I' be closed linear relations (multivalued operators) on the space X.
We define the operator £ : D(£) € C — C as follows. A function € C such that
(x(to),x(t2)) € T and (x(t1),xz*(t1)) € A belongs to D(L) if there exists a function

f € C such that
¢
x(t) =U(t, s)x(s) + /Z/{(t,T)f(T)dT, tiog <s<t<t, 1=1,2.

In this case we set Lz = f.

We denote by the symbol D the relation I" — U (¢, t1)AU(t1,t0), by the symbol &}
the subspace T'0 N U(t2,t1).A0, and by the symbol X, the subspace U(ty,to)D(T) +
D(A).
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Theorem 1. The operator L is continuously invertible if and only if the relation
D is continuously invertible, X, consists of zero only, and Xy coincides with the
whole X.

Theorem 2. The operator L possesses the Fredholm property if and only if the
relation D possesses the Fredholm property, Xy has a finite dimension, and Xs has
a finite codimension.

Quantum Double Well in Magnetic Field:
Tunnelling, Libration, Normal Forms

S. Yu. Dobrokhotov
A.lshlinski Institute for Problems in Mechanics, RAS, Moscow, Russia
Moscow Institute of Physics and Technology, Moscow, Russia

We consider the spectral problem for 2-D magnetic Shrédinger operator with the
potential having a form of symmetric double well and with constant magnetic field.
This problem is very well studied when the magnetic field is absent. In particular,
in semiclassical limit the distance between two lowest eigenvalues is exponentially
small with respect to a corresponding small parameter h. The derivation of explicit
formulas for the splitting of eigenvalues (V. Maslov, A. Poljakov, E. M. Harrel,

B. Helfer, J. Sjostrand, B. Simon, etc.) is based on a passage from standard fast

oscillating WKB-functions A(r)e% to fast decaying functions A(a:)e%(z), This

passage changes the corresponding real-valued standard Hamiltonian H = p?/2+V (z)
to (again!) the real-valued “tunnelling” Hamiltonian H = —p?/2+ V (z), which allows
one to use the theory of the classical Hamiltonian systems for description of tunnel
effects. This idea does not work for the situation including the magnetic field: the
“tunnelling” Hamiltonian becomes a complex-valued function and one cannot use
the theory of the classical Hamiltonian systems. Our observation is that one can
reduce the quantum double-well problem for the magnetic Shrodinger operator to
the standard quantum double-well problem using the partial Fourier transform and
mixed momentum-position coordinates. We show also that the splitting formula takes
natural and simple form if it is based on so-called libration and normal forms coming
from classical mechanics. We apply these results for description of tunnelling of
wavepackets in quantum nanowires.

This work was done together with J. Briining and R.V. Nekrasov and was
supported by DFG-RAS project 436 RUS 113/990/0-1, Grant N 2.1.1/450 of Russian
Federation Ministry of Sciences and Education and by RFBR grant Ne 11-01-00973.
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Choice Problem of Weight Functions in Hardy-Type
Inequalities and Applications to PDEs
in Full Euclidean Space

Ju. A. Dubinskii

Moscow Power Engineering Institute, Moscow, Russia
We consider the following questions:

1. Constructive description of all possible weighting functions in Hardy-type
inequalities;

2. Multidimensional weighted inequalities of the Friedrichs and Poincaré type in
full Euclidean space;

3. Elliptic equations in the Sobolev scale of functions in the full Euclidean space;

4. Decomposition of the Sobolev spaces and gradient-divergence spaces in the sum
of solenoidal and potential subspaces;

5. Divergence and rotor variants of the Stokes systems in the full Euclidean space

(“explicit” solutions);

6. Stationary Fokker—Plank-Kolmogorov equations (continuum of nontrivial
solutions).

On Initial-Boundary Value Problems
for Odd-Order Quasilinear Evolution Equations

A. V. Faminskii

Peoples’ Friendship University of Russia, Moscow, Russia

Initial-boundary value problems in the domains I} = (0,7) xR, R} = {z : z,, >
0}, 17 = (0, T) xR, R* ={z:a, <0},and Qr = (0,7)x3, X ={z:0 <z, < 1},
where x = (z1,...,2,) and T > 0 are arbitrary, are considered for an equation

2041
up— Y Pr(Op)u+divy g(u) = f(t,z), 1EN,
k=0

where v = wu(t,x), ¢ = (91,.-.,9n), and Py are linear homogeneous differential
operators of orders k. Initial and boundary conditions

u|t:0 = uo(),

Al gy = u(t, '), m=0,...,0—1,

Tn

ag:,u|ar9: Vl(t»z/); m=0,...,1,
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forz € Q, (t,2') € By = (0,T) xR, 2’ = (x1,...,2,_1), where Q is either R?, R™
or ¥ respectively and 9'€2, ") are respectively the left-hand and the right-hand parts
of the boundary (if exist), are set. The operators Py are subjected to the following two
assumptions:

1) (—W%PM@) S0 VE#0,

(2) either (—=1)7P;(€) <0  VEER™, j=1,...,1,
or there exists natural m, 2 < m <[, such that
(—1)"Pon(§) <0 VE£0,  (=1)/Py,(§) <0 VEER", j=m+1,...,1,

where Py (&) are the symbols of the operators Pj. The functions g;(u) are assumed to
be in the space C*(R) and satisfy the following growth restrictions: for all u € R

gj(w)| < e(jul +1), 0<b; <1, by <4l/n.

Results on existence and uniqueness of global weak solutions are established. For
example, the following theorem is proved for the third problem.

Theorem 1. Assume that wy € LX), f € Li1(0,T;L2(%)), tm,Vm €
HEH T/ CHD ™ (B where s = 0 if n < (20— 1) and s > (n+1)/2 — 1 if

n>(20—1), m=0,...,l—1, vy € Lo(Br). Then there exists a weak solution u(t,x)
to the considered problem in Qr such that

u € Cy([0,T]; La(X)) N Ly(0,T; HY(X)).

If, in addition, b; < (41 —2)/n for all j, then the constructed solution is unique in
such a class.

Entropic Stability

T. Fisher
Brigham Young University, Provo, USA

Andronov and Pontryagin suggested that the study of dynamical systems should
focus on stable systems. It turns out that topologically Cl-stable dynamics (also called
structurally stable systems) can be analyzed; indeed, they are exactly the uniformly
hyperbolic systems that satisfy an additional assumption. However, the structurally
stable diffeomorphisms are not dense and therefore the study of such systems is
insufficient. A natural approach is to consider weaker forms of stability. In this talk
we will introduce an entropy-based notion of stability. Furthermore, we analyze a class
of deformations of Anosov diffeomorphisms: these deformations break the topological
conjugacy class but leave the high entropy dynamics unchanged. More precisely, there
is a partial conjugacy between the deformation and the original Anosov system that
identifies all invariant probability measures with entropy close to the maximum.
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Synchronizability of Networks with Strongly Delayed
Links: a Universal Classification

V. Flunkert,! S. Yanchuk,? T. Dahms,! and E. Scholl*

L Institut fiir Theoretische Physik, Technische Universitét Berlin, Germany
2 Institut fiir Mathematik, Humboldt Universitét Berlin, Germany

Stability of synchronization in delay-coupled networks of identical units generally
depends in a complicated way on the coupling topology. We show that for large
coupling delays synchronizability relates in a simple way to the spectral properties of
the network topology. The master stability function used to determine the stability
of synchronous solutions has a universal structure in the limit of large delay: It is
rotationally symmetric around the origin and increases monotonically with the radius
in the complex plane. This allows a universal classification of networks with respect
to their synchronization properties and solves the problem of complete synchronization
in networks with strongly delayed coupling.

Decentralized Output Feedback Synchronization
of Dynamical Networks

A. L. Fradkov, G. K. Grigoriev, |. A. Junussov, A. A. Selivanov
Institute of Problems of Mechanical Engineering, Saint-Petersburg, Russia
Saint-Petersburg State University, Saint-Petersburg, Russia

Controlled synchronization of networks has a broad area of important applications:
control of power networks, cooperative control of mobile robots, control of lattices,
control of biochemical, ecological networks, etc. However, most existing papers deal
with the networks of dynamical systems with full state measurements and full control
(vectors of agent input, output, and state have equal dimensions). In the talk a
survey of authors’ results on synchronization of nonlinear dynamical networks with
incomplete measurements and incomplete control in presence of possible delays and
disturbances is given.

Let the network S consist of N interconnected subsystems (agents)

N

& = Awi+ Buito(e)+ Y {aipi(zi—x5) +Bigthig (w5 (t=7) =i (t=m) }+ £i(D), (1)
j=1

where x; € R", u; € R™, y; € Rl Functions ¢;;(+),%(:)i = 1,...,N,j =1,...,N

describe either physical or communication links among the subsystems and f;(¢) is

some bounded disturbance. Let the control goal be

T (1) — 7(0)] < A, @

where Z(t),u(t) are the state and the input of the leader agent
7 = AT + Bu(t) + »(7),7 = C"7. (3)
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The goal is to find decentralized control u; = U;(y;,t), providing (2). The proposed
adaptive control algorithms typically have the form

;= 0:(t)"Gi, 0:(t) €R', i =1,..., N, (4)
o ) g ()i (t), Qiwi(t),t) > Ay
0:(t) = { 0, Qilxs(t),t) < Au. ()

where I'; = I'J > 0 are [ x [—matrices and 6,(¢) are adjustable parameters. The
conditions ensuring control goal are established. The work is supported by RFBR
(11-08-01218) and FGP “Cadres” (contracts 16.740.11.0042, 14.740.11.0942).

Parabolic Equations of Normal Type: Structure of
Phase Flow and Nonlocal Stabilization

A. V. Fursikov

Moscow State University, Moscow, Russia

Energy estimates play an important role in the investigation of 3D Navier—Stokes
systems and other equations of continuous media. The absent of such bounds in the
phase space H'! is a very serious obstacle to prove the existence of nonlocal smooth
solutions.

A semilinear parabolic equation is called equation of normal type if its nonlinear
term B satisfies the following condition: the vector B(v) is collinear to the vector
v Y. Since energy estimates are derived from the condition B(v) L v, equations of
normal type does not satisfy the energy bound “in the most degree”. That is why their
investigation should help to clarify certain questions related to energy estimates.

For the parabolic equation of normal type with periodic boundary conditions, the
structure of its phase flow will be described. Its phase space can be divided on: (a) the
stability set (solutions with initial conditions from this set tends to zero as the time
t — oo with a certain prescribed rate, (b) the set of explosions where the solution
blows up during a finite time, and (c) the intermediate set dividing previous ones,
where the solution either tends to zero as ¢ — oo slower than solutions from the set
(a) or it increases unboundedly as ¢t — oo.

For arbitrary initial condition, we construct starting control supported in a given
fixed subset such that the solution of the obtained boundary-value problem tends to
zero as t — oo. The structure of the control becomes universal: only its norm and
“sign” depend on the initial condition. As known, this starting control can be used
for construction of the control on the boundary (in the case of the mixed Dirichlet
boundary-value problem) that stabilizes the solution of the mentioned boundary-value
problem.
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Monotonicity and Nonexistence for Quasilinear
Dirichlet Problems in a Half-Space

E.l. Galakhov
Peoples’ Friendship University of Russia, Moscow, Russia

We consider the problem

—Apu=ul (z€RY),
w>0 (x € RY), (1)
u=0 (z € ORY),

where Apu := div (|Du[P~2Du), p > 1, ¢ > max{l,p — 1}.

We establish new sufficient conditions for monotonicity of solutions to problem (1)
with respect to the normal variable. This allows us to obtain new nonexistence results
for this problem.

The proof is based on a new version of the comparison principle for quasilinear
elliptic operators in unbounded domains and on the technique of moving planes.

On Regge—Gel'fand Problem of Construction
of the Piaif System of Fuchsian Type
with a Given Singular Divisor

V. A. Golubeva

Moscow Aviation Institute, Moscow, Russia

At the beginning of the sixties of the XX century I. M. Gelfand stated the
problem of construction of the system of partial differential equations of generalized
hypergeometric type for Feynman integrals of quantum electrodynamics. T. Regge
presented it on International Conference “Battelle rencontres”. The definition of
equations of the generalized hypergeometric type was not given. One of treatment of
this statement was the consideration of the problem as the Riemann-Hilbert problem
of construction of differential equations using the ramification of a given object and its
monodromy group. At this moment (beginning from the twenties) there were known
several hypergeometric functions (Appell and Kampe de Feriet) Fy, F», F3, Fy of two
complex variables. There was natural to try to write hypergeometric-type equations
for them, using the similarity with one-dimensional case. This was done. Next step,
using the fact that the Feynman integrals have singular points on the Landau varieties
(later the ramification type of these integrals was investigated) and using a theorem
of algebraic geometry on reduction of order of pole, the corresponding systems of
partial differential equations was written. As in the case of Appell functions of, those
equations were of the Fuchsian type. So, the form of desired equations became obvious.
From the other hand, physicists prepared for mathematicians very reach class of partial
differential equations of Fuchsian type: Knizhnik—Zamolodchikov equations associated
with the root system and the ramification along the reflection hyperplanes of these
systems. In the structure of the coefficients of such systems the role play the Casimir
elements of corresponding Lie algebra. These invariants of the second order and also
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of higher orders play the principal role in construction of the Fuchsian type equations
in two or more parametric case, where as parameters are considered constants number
of which is equal to the number of orbits of the root system. It is of great interest the
Fuchsian reduction of the nonlinear partial differential equations.

In the talk the results obtained in this direction and open problems will be
considered.

Dynamical Properties of the Trace Map
and Spectrum of the Weakly Coupled
Fibonacci Hamiltonian

A.S. Gorodetski
University of California, Irvine, USA

It is always exciting to obtain a new connection between two different areas of
mathematics. It turns out that there is a beautiful relation between the spectral
properties of the discrete Schrodinger operator with Fibonacci potential, the so-
called Fibonacci Hamiltonian, and the modern theory of dynamical systems (namely,
uniformly hyperbolic and normally hyperbolic dynamics).

The Fibonacci Hamiltonian is a central model in the study of electronic properties
of one-dimensional quasicrystals. It is given by the following bounded selfadjoint
operator in (?(Z):

[Hy,Y)l(n) =¢v(n+1)+¢pn—1)+ VX[l_a71)(na +w mod 1)¥(n),

where V > 0, a:@, and w e T=R/Z.

We consider the spectrum of the Fibonacci Hamiltonian (it is known that this set
is a Cantor set of zero Lebesgue measure) for small values of the coupling constant,
and study the limit, as the value of the coupling constant approaches zero, of its
thickness and its Hausdorff dimension. We prove that the thickness tends to infinity
and, consequently, the Hausdorff dimension of the spectrum tends to one. We also
show that at small coupling, all gaps allowed by the gap labelling theorem are open
and the length of every gap tends to zero linearly. Moreover, for sufficiently small
coupling, the sum of the spectrum with itself is an interval. This last result provides
a rigorous explanation of a phenomenon for the Fibonacci square lattice discovered
numerically by Even-Dar Mandel and Lifshitz [6,7]. Finally, we show that the density
of states is exact-dimensional, and its dimension also tends to one as coupling constant
tends to zero. The proofs of these results [4,5] are based on hyperbolicity of the trace
map associated with Fibonacci Hamiltonian [1-3].

This is a joint work with David Damanik.
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Reaction-Diffusion Equations with Hysteretic Free
Boundary

P. L. Gurevich
Free University of Berlin, Germany
Peoples’ Friendship University of Russia, Moscow, Russia

R. V. Shamin
Shirshov Institute of Oceanology, RAS, Moscow, Russia
Novosibirsk State University, Novosibirsk, Russia

S. Tikhomirov
Free University of Berlin, Germany

We consider reaction-diffusion equations involving a hysteretic discontinuity which
is defined at each spatial point. These problems describe chemical reactions and
biological processes in which diffusive and nondiffusive substances interact according
to hysteresis law.

Hysteresis may switch at different spatial points at different time moments,
dividing the spatial domain into subdomains where hysteresis has the same state and
thus defining spatial topology of hysteresis. The boundaries between the subdomains
are free boundaries whose motion depends both on the reaction-diffusion equation and
hysteresis. The interplay of those two leads to formation of spatio-temporal patterns.

We formulate a theorem that states that the problem has a unique solution as
long as this solution preserves the spatial topology of hysteresis, while the change of
topology may occur only via a spatial nontransversality of the solution. In the end, we
will present numerical results indicating a nontrivial behavior of the solution related
to the change of topology.
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Asymptotic Properties of Solutions
of Linearized Equations
of Low Compressible Fluid Motion

N. A. Gusev

Moscow Institute of Physics and Technology, Moscow, Russia

Consider a low compressible barotropic fluid with the following equation of state:
0 = oo+a(p—pret), Where g is the density, p is the pressure, « > 0 is a compressibility
coefficient (factor), oo > 0, and pef = const. Let D C R? be a bounded domain
with a piecewise smooth boundary, d € N, d > 2, and T" > 0. The linearization of
the Navier—Stokes equations in the cylinder D x (0,7) near an arbitrary state with
constant density (¢ = gg) for such fluid can be written in the following form:

pt — (b, V)p+cp+diva =o,
w + Vp=—Au+ pf +s,
p = ap,
where — Au =vAu+ kVdivu — (a, V)u+ Mu,

1)

b,u,f,s,a: D x (0,7) — R¢ are vector fields, p,c,o,p: D x (0,T) — R are scalar
fields, M = M (x,t) is a scalar matrix of the size d x d, x € D, t € [0,T], and v > 0
and k > 0 are viscosity coelficients. The fields p,u and p are the unknowns in the
system (1).

Let blsp = 0. Consider the following initial and boundary conditions for (1):

ul;— =u’, pli=o=p°, ulpp =0, (2)

where u®: D — R% and p°: D — R.

We present sufficient conditions for existence and uniqueness of weak solutions
to the initial-boundary value problem (1), (2). We also study the behaviour of the
solutions of (1), (2) for a — 0: we prove that these solutions converge to the solution
of the initial-boundary value problem for the corresponding linearized incompressible
Navier-Stokes equations. In the case of the complete Navier-Stokes(-Fourier) system,
similar convergence has been studied by E. Feireisl, P.-L. Lions, N. Masmoudi, E.G.
Shifrin, and other authors. For the system (1), (2), we shall give some analogues of
their results as well as sufficient conditions for strong convergence of the pressure.
Our main results can be stated as follows:

(1) In the general case, the velocity field u = u,, converges weakly;

(2) If the initial condition u® for the velocity is solenoidal, then u, converges
strongly and p = p, converges x-weakly.

(3) If, moreover, the initial condition for the pressure coincides with the initial value
q° of the pressure ¢ in the incompressible fluid and, in addition, 0y fD qdx =0,
then p, converges strongly.

The work has been supported by RFBR grant 09-01-12157-ofi_m.
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On Domains Inaccessible to Solutions of Quasi-Linear
Hyperbolic Equations with Parabolic Degeneracy

J. Gvazava
Georgian Technical University, Tbilisi, Georgia

Initial and characteristic conditions, which cause strong parabolic degeneracy of
non-strictly hyperbolic quasilinear equations are discussed. There are considered cases
when inaccessible to solutions domains bounded by curves of degeneracy are in areas
of influence of perturbations.

Nonlinear Equations with Delay and Liesegang Rings

A.M. II'in
Chelyabinsk State University, Chelyabinsk, Russia
Institute of Mathematics and Mechanics (Ural Branch of the RAS), Ekaterinburg, Russia

Consider the parabolic equation of the form Lu = F(u), where u(z,t) is the desired
function, ¢ is the time, x is the point of n-dimensional space, L is a linear parabolic
operator. The domain of the operator F are functions u(s) with s < ¢.

We investigate the problem, which describes the diffusion of substances for which
there is an influx or decrease of new portions of the substance, depending on the
density, reaching a previous maximum or minimum. We show that the oscillating
process occurs and the resulting pattern of distribution of matter in the two-
dimensional case is similar in appearance to the Liesegang rings.

Small Stochastic Perturbations
of Hamiltonian Flows: a PDE Approach

H. Ishii
Waseda University, Tokyo, Japan

We present a PDE approach to the study of averaging principles for (small)
stochastic perturbations of Hamiltonian flows in 2D, which is based on a recent
joint work with Takis Souganidis. Such problems were introduced by Freidlin and
Wentzel and have been the subject of extensive study in the last decade. If the
Hamiltonian flow has critical points, then the averaging principle exhibits complicated
behavior. Asymptotically, the slow (averaged) motion has 1D character and takes
place on a graph, and the question is to identify the limit motion in terms of PDE
problems. In their original work Freidlin and Wentzell, using probabilistic techniques,
considered perturbations by Brownian motions, while later Freidlin and Weber studied,
combining probabilistic and analytic techniques based on hypoelliptic operators, a
special degenerate case. Recently Sowers revisited the uniformly elliptic case and
constructed what amounts to approximate correctors for the averaging problem. Our
approach is based on PDE techniques and is applied to general degenerate elliptic
operators.
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Transmission Problems for Reactive Flow
and Transport-Multiscale Analysis
of the Interactions of Solutes with a Solid Phase

W. Jager, M. Neuss-Radu
Interdisciplinary Center for Scientific Computing (IWR), Mathematics Center Heidelberg
(MATCH), University of Heidelberg, Germany

The modelling of reactive flows and transport in media consisting of multiple
phases, e.g. of a fluid and a solid phase in a porous medium, is giving rise to many
open problems for multiscale analysis, in particular, at the interfaces.

So far, the interactions of the solvent with the solid phase are too roughly
approximated in many applications. In this lecture, we are discussing a more detailed
mathematical representation of the processes in the solid on the micro-scale and are
going to sketch the analysis of the arising transmission problems.

The following specific transmission conditions on the interface between the solid
and the fluid phase are considered:

e the continuity of the fluxes of the solutes;

o the following nonlinear relation of the concentrations:
h(ve) = we.

Here w, is the vector of concentrations in the solid phase and v. represents the
concentrations in the fluid phase. ¢ is the scale parameter of the porous media. The
structure of h is determined referring to arguments from statistical physics.

The following two problems have to be solved:

(1) to investigate the existence and uniqueness of solutions for a fixed ¢;

(2) to derive estimates of the solutions needed to pass to the scale limit ¢ — 0 and
to formulate effective equations.

Trying a standard weak formulation for the underlying partial differential equations
does not work since the nonlinear relation on the interface cannot be integrated in
functionals or in function spaces directly.

Whereas a scalar diffusion-reaction equation with this nonlinear transmission
condition could be solved, the problem for systems was open up to now. Here, a
relaxation approach is used to solve the transmission problem for systems for fixed
scale ¢, using structural assumptions on k. Finally, the scale limit is discussed and an
effective system is derived.

The results obtained here are based on arguments used by Jiger and Kacur for
relaxation approximations of nonlinear parabolic systems.
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On the Influence of Nonlinear Dissipative and
Damping Terms for Hyperbolic Equations

O. Jokhadze
I. Javakhishvili Thilisi State University, Thilisi, Georgia

The initial and characteristic problems for wave equations with nonlinear
dissipative and damping terms are considered. The uniqueness, local and global
existence, and blow-up of solutions of the problems mentioned are investigated. The
paper’s originality is the coalescence of two standard methods: a priori estimates of
solutions in the class of continuous functions is given by energetic methods; basing
on this result, a priori estimates in the class of continuously differentiable functions
is obtained by means of the classical method of characteristics.

Existence of Very Weak Solutions
for Nonlinear Elliptic Equations and Systems

E. A. Kalita
Institute of Applied Mathematics and Mechanics, NASU, Donetsk, Ukraine

We consider high-order nonlinear elliptic system of type div™ A(xz, D™u) =
div™ f(z), z € R", with the natural energetic space W" and standard structure
conditions (e.g. m,p-Laplacian). A term very weak solution means a solution in a
space weaker than the natural energetic one. As for Lebesgue scale of spaces, a priori
estimates of solutions in W) _ are well known (J. Lewis (1993); T. Iwaniec and
C. Sbordone (1994)), but existence results in W)™ _ still absent due to the lack of the
monotonicity in spaces different from W)". The solvability is known only in grand
Sobolev spaces Wlf’)’ with the property L, C L,y C Ly 10c for any e > 0.

We consider our system in the scale of dual Morrey spaces W}", = {u : D"u €
Ly}, where Ly, o = Ly, o(R"), 1 <p <00,0<a<n(p—1), is defined by the norm

. a — lip
WPl =nt [ Iwde,  wlo)= ([ 0P cdatn)
o Rn R;L:F

and inf is taken over nonnegative Borel measures o on R = {(y,7) : y € R",r > 0}
with normalization o(R}™) = 1.

Unlike spaces with Lebesgue exponent ¢ # p, dual Morrey spaces allow us to
establish the pseudomonotonicity of nonlinear operators for some range of a, which
leads to the next result.

Theorem. Let p € (1,n). Then there exists a* > 0 depending on n,p,m, and the
ellipticity modulus of the system such that for a € (0,a*) and |f|P'/P € L, . there
exists a solution u € W, such that

/
1D ullpa < cll1f17/P[lp.a-
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Explicit estimates of a* are given for p close to 2.
This is the first existence result for nonlinear elliptic systems with p # 2 in spaces,
to say, considerably weaker than the natural energetic one.

Periodic Solutions Bifurcation from the Cycle
with Multidimensional Degeneracy
for a Neutral Type Equation with a Small Delay

M. I. Kamenskii, B. A. Mikhaylenko

Voronezh State University, Voronezh, Russia
For an equation of the form
(t) = f(x(t),z(t — eh)) + a@(t — eh) + eg(t, x(t), z(t — eh),e) + eb(t)&(t — eh), (1)

where x : R — R™, functions f : R” x R" — R", g : Rx R" x R" x [0,1] — R"
are sufficiently smooth, a and b(t)are n x n-matrices with |ja]| < ¢ < 1, and h > 0,
the bifurcation problem of T'—periodic solution from limit cycle is considered. Assume
that Eq. (1) with e = 0 has a T—periodic cycle and linearized on this cycle equation
has adjoint Floquet solutions. Let the cycle of Eq. (1) be parametrized by parameter
6 € [0,T]. The existence conditions for bifurcate solutions of the form

m

x° = x(0) + eppeo(0) + €2 Z wie; (0) + eyo(0) + O(e?),

where eg(0) is the initial function for the limit cycle of the linearized equation and
ej(#),7 = 1,...,m,m < n, are initial functions for adjoint Floquet solutions are
obtained. The coefficients p;,j = 0,...,m and the function yo(#) can be found in
explicit way.

The work is partially supported by RFBR grants 10-01-93112, 09-01-92003.

On Nilmanifolds Admitting Anosov Diffeomorphisms

A. Karnauhova
Free University of Berlin, Germany

After introducing Anosov diffeomorphisms, which are structurally stable and
therefore being important for the dynamical systems, we will consider the following
question raised by D.V. Anosov in the Moscower Conference: “What compact M
admits Anosov diffeomorphism?”

This classification problem remains unsolved. Nevertheless, there are some results
with algebraic methods, which show that nilmanifolds N/T", where N is a nilpotent
Lie group, I is a uniform discrete subgroup of N, and infranilmanifolds admit Anosov
diffeomorphisms. We will give some examples of nilmanifolds and a construction of a
non-toral Anosov diffeomorphism.
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Cesaro Convergence of Spherical Averages for
Measure-Preserving Actions of Markov Semigroups

A. V. Klimenko

Steklov Mathematical Institute, Moscow, Russia

The talk is based on a joint work with A. Bufetov and M. Khristoforov [1].

Consider a semigroup I' that is Markov with respect to a set of generators O.
Recall the definition of a Markov semigroup. The semigroup I" has a natural norm:
lglo is a minimal length of a word representing g; let So(n) = {g : lglo = n}.
Consider a directed graph G, its vertex vg and a map £: £(G) — O from the set of its
edges to the set O. This map is naturally extended to the map & from the set P(vg) of
all finite paths in G starting at vg, to the group T: £(e;...e,) = &(e1) ... &(en). The
semigroup T is called Markov with respect to the set O if the map £ is bijective and
it maps any path of length n into So(n).

Suppose that the semigroup I' acts on a probability space (X,v) by measure-
preserving transformations 7}, g € I'. Take any function ¢ € L'(X,v) and consider
the sequence of its spherical averages:

#So Z poTly

9650 n)

sn(p) =

(# stands for the cardinality of a finite set; if So(n) = @, then we set s,(p) = 0).
Next, consider the Cesaro averages of the spherical averages:

1 N—-1

CN(‘P) = N Z Sn(‘P)-

n=0

Theorem. Let T' be a Markov semigroup with respect to a [finite generating
set O. Assume that T acts by measure-preserving transformations on a probability
space (X,v). Then for any p, 1 < p < oo, and any ¢ € LP(X,v) the sequence
en(p) converges in LP(X,v) as N — oo. If, additionally, ¢ € L*(X,v), then
the sequence cn(p) converges v-almost everywhere as N — oo.

It was shown by Gromov [3] that any word hyperbolic group is Markov with
respect to any symmetric set of generators. Thus, this theorem can be applied to any
hyperbolic group.

In case of an irreducible graph G, the theorem was proven earlier by Bufetov [2].
The proof in the general case is obtained through a decomposition of the graph G into
smaller blocks (eventually irreducible ones).
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The Center of Excellence G-RISC

N. Kolanovska
The German—Russian Interdisciplinary Science Center (G-RISC)

The German—Russian Interdisciplinary Science Center (G-RISC) is a Center of
Excellence established in March 2010. The interdisciplinary center of excellence builds
on a long tradition of scientific cooperation between scientists of Russia and Germany.
The main offices are based at St. Petersburg State University and Freie Universitat
Berlin. G-RISC relies on funding and regulations of the German Academic Exchange
Service (DAAD) and the German Federal Foreign Office. G-RISC provides a unique
interdisciplinary research platform supporting education and research in binational
projects between Russia and Germany. The focus is interdisciplinary researches in
four important areas of natural sciences: physics, geophysics, physical chemistry, and
mathematics.

The official launch of the Center of Excellence was preceded by a scientific
competition for the best project proposals with 23 projects being awarded funding in
the first term of 2010. This type of competition is organized biannually. The next call
for proposals is scheduled for October 2011, where the deadline is set to October 31,
2011.

G-RISC primarily funds the mobility of young researchers between Russia and
Germany. First of all, this concerns research stays in laboratories of the partner groups
in the other country. For outstandingly bright Russian students who are involved in
interdisciplinary research projects with German partner groups, it is also possible to
become a sur-place stipend for maximum half a year. It is anticipated that research
stays and stipend are increasing the chances for stable long-term Russian-German
collaborations. Each single project is important helping to tie researchers and research
interests together and to develop novel and interdisciplinary research between Russia
and Germany.

In total, more than 30 institutions and more than 100 groups from Russia and
Germany conduct researches and teach at the center.

In the presentation, I would like to describe how does G-RISC works, to explain
the main aspects, for example, what is the administrative structure of Center, how
to apply for a proposal, and what is funded by G-RISC. Moreover, some statistics
regarding to the Center and the participating institutions would be presented.
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On Abstract Green's Identity for Sesquilinear Forms

N. D. Kopachevsky

Vernadskii Taurida National University, Simferopol, Ukraine

1°. Let for arbitrary Hilbert spaces F, F, and G (with introduced scalar products)
the following assumptions be fulfilled.

(i) The space F'is boundedly embedded in FE, F — E.
(ii) There exists an abstract trace operator v: F — G and R(y) =: G4 — G.

(iii) There exists a sesquilinear form ®(n,u), n,u € F, such that |®(n,u)| <
alnllellullr, Re®(u,u) > eallullf, ¢ > e > 0.

Theorem 1. If assumptions (i)-(iii) hold then the following Abstract Green’s Identity
is valid:

O(n,u) = (n, Lu)yg + (yn, 0u)e, Vnu€F, LuecF*, OJue(Gy) . (1)

Here Lu is an abstract differential expression corresponding to the form ®(n,w) and
Ou is an abstract conormal derivative. They are defined uniquely by the data of the
problem.

2°. Let for projections pi, k = 1,¢, acting in G, the following assumptions be
fulfilled.

(iv) pr = wrpr (or p; = pjw)) where py is a bounded restriction operator acting
from G on (G4)k := prG+, and wy, is bounded extension operator acting from
(G+)k onto kak» k= 1,q.

(v) prwr = (I+)r (an identity operator on (G4)r), k=1,q.
q
(vi) > pr = I1 (an identity operator on G).
k=1

Theorem 2. Under assumptions (iv)—(vi), Abstract Green’s ldentity (1) has the form

Q

(I)(nvu) = <777 Lu>E + ZWN}ﬁkU)Gk» v"]vu S F» (2)
k=1

Yin = peyn € (G4)g, Opu:i=wpdu € (G1)r, (G — Gr — (G1)i, k=1,q.

Here v, = pyy is an abstract trace operator on the k-th part of the boundary and
O, = wj,0 is the corresponding conormal derivative.

3°. We consider some examples of applications of formulas (1) and (2) for classical
boundary-value problems and for problems in hydrodynamics and elasticity theory.
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Dynamical Coherence Implies Central Shadowing
S. G. Kryzhevich

Saint-Petersburg State University, Saint-Petersburg, Russia

S. Tikhomirov

Free University of Berlin, Germany

Let M be an n-dimensional C'-smooth compact manifold, dist(-,-) be the
Riemannian metrics on M, and |- | be the Euclidean norm in R™. Consider the
space Diff* (M) of C'-smooth diffeomorphisms f: M — M.

Definition 1. A diffeomorphism f € Diff* (M) is called partially hyperbolic if it or
its fixed power f" satisfies the following property. There exist a continuous bundle
TM = E* @ E* @ E¢ and continuous functions v,0,v,% : M — (0,400) such that
vo<l,v<y<dy<ovlandiorallveR” [v|=1, 2z M

|IDf(z)v| <v(z) if ve E*(x); |IDf(x)v| <o~ Hx) i ve E“(x);
V(@) < [Df(z)o] <A(x) il v e EX).

Definition 2. We say that a k-dimensional distribution E over T'M is uniquely
integrable if there exists a k-dimensional foliation W of the torus M, whose leaves
are tangent to E at every point. Also, any C'-smooth path tangent to E is embedded
to a unique leaf of W.

Definition 3 ([1]). A partially hyperbolic diffeomorphism f is dynamically coherent
if both distributions £ and E°* are uniquely integrable.

Then, as it was proved in [2], both foliations W2 and WS tangent to £° and

E" respectively contain a subfoliation W, tangent to E°. We denote by W7 (x) the
connected component of the set W7 (z) () B(z,¢), which contains the point z.

Definition 4. A sequence {xy, : k € Z} is called a central d-pseudotrajectory (d > 0)
if dist (f(zx), 2x4+1) < d and f(zx) € W (2k41) for all k € Z.

Definition 5. We say that the diffeomorphism f satisfies the Lipschitz central
shadowing property if there exists L > 0 such that for any ¢ > 0 and any e-
pseudotrajectory {xy : k € Z} there exists a central Le pseudotrajectory y; such
that dist (xg, yi) < Le for all k € Z.

We prove the analogue of the classical Anosov shadowing lemma for partially
hyperbolic diffeomorphisms.

Theorem 1. Let a diffeomorphism f € Diff' (M) be partially hyperbolic and satisfy
the dynamical coherence property. Then f satisfies the Lipschitz central shadowing

property.

The first author was supported by the UK Royal Society, by the Russian Federal
Program “Scientific and pedagogical cadres”, grant no. 2010-1.1-111-128-033, and
by the Chebyshev Laboratory (Department of Mathematics and Mechanics, Saint-
Petersburg State University) under the grant 11.G34.31.2006 of the Government of
the Russian Federation.
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Some Properties of the n-th Order Operator Pencil

[. V. Kurbatova
Voronezh State Technical University, Voronezh, Russia

Let X and Y be Banach spaces. We consider the n-th order pencil
A= ANE, + A" E, 1+ + \Fy + F,

where Fy,: X — Y, k=0,1,...,n, are bounded linear operators acting from X to Y.
The resolvent set p({F}}) of the pencil is the set of all A € C such that the operator
N E,+ A" E, 1+ -+ A1+ Fp is invertible; the complement o({F}}) = C\ p({Fx})
is called the spectrum of the pencil. The family Ry = (\"F, + A" F, 1 +-- -+ \Fy +
Fo)™Y, X € p({Fy}), is called the resolvent.

We denote by BO(Y, X) the Banach space of all bounded linear operators acting
from X to Y. We denote by BO({p,1)(Y, X) the closure with respect to the norm of
the space BO(Y, X) @ --- @ BO(Y, X) of the linear span of all vector resolvent Ry =
(Rx, ARx, A2Ry, ..., A" 'R)). We endow BO((p, (Y, X) with the multiplication

(A1,...,4,) ® (B1,...,B,) = (C1,...,Cp),

where C}, are defined by the formula

n—k—1n—k—i n i—(n—k+1)
Cry1 = E E A1 Fn—iBnyi—io1 — E E A1 Fn—iBnyi—iyi-
=0 =1 i=n—k+1  1=0

The family Ry, A € p({F}), satisfies the ®@-Gilbert identity
Ry — 9‘{“ = —()\ — M)m,\ ®£RH.

The space BO((p,1)(Y, X) is a commutative Banach algebra with respect to the
multiplication ®. This algebra has a unit if and only if the operator F;, is invertible.
In this case, the unit is the element (0,0,...,0, F;1).

Let us denote by the symbol O(a({F,})) the set of all functions that are analytic
in some neighborhood of the set o({F,}). Obviously, O(c({F,})) is an algebra with
unit with respect to the pointwise operations.

Theorem. Let the operator F,, be invertible. Then the mapping
T=xo®X1DX2D D Xn-1: O(c({Fn})) = BOr, (Y, X),

where the mappings xi: O(c({F,})) — BO(Y,X), k=0,...,n— 1, are defined by
the formulas

W) = g [ XFONORE + AP+ 1)

and T surrounds the spectrum o({F}}), is a morphism of algebras with unit.
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On Two-Parameter Analogue of Malkin’s Theorem

I. Kytischev, N. A. Pismennyy, E. Rachinsky

Voronezh State University, Voronezh, Russia

We consider the system

dr _ fi(x1) + papr(x2)
A (1)
df: = fa(w2) + papa(z1),

where f; : R — R", fo : R™ — R™, p1 : R™ — R", ¢ : R — R™, and
f1, f2, 01,92 are continuously differentiable and p1, uo are small positive parameters.
[t’s supposed that the limit equations #; = fi(x1) and #s = fo(x2) have a Tj-periodic
solution 7 = 11 (¢) and Ty-periodic solution xo = 9 (t). We assume that 1 is a simple
eigenvalue of the translation operators by the trajectories of the equations

1 = f1 (1 (1), (2)
o = f(12(t))y2 (3)

on the times 77 and T5 respectively.

Let & and & be non-trivial periodic solutions of the adjoint to Egs. (2) and (3)
and the scalar products < ¢1(12(+)),&1(+) > and < @a(91(+)),&2(-) > have bounded
primitives.

The last assumption is the following: for the functions

¢
Py(hy) = lim % < p1(2(s+ h1)),&(s) > ds,

n—oo 0

t
Py(h2) = lim %/ < pa(Y1(s + ha)),&2(s) > ds,
n—oo 0

the derivatives ‘;ll%, g% are different from zero.

Theorem. Let ci,c0 >0, and 0 < e < % be constants and 1 and o belong to the set
described by the inequalities cluf_e) < pg < 02u§1/2+8). Let the above conditions be
satisfied. Then system (1) has a unique almost periodic solution for all sufficiently

small values of parameters py and ps.
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Kohno Systems on Manin—-Schechtman
Configuration Spaces

V. P. Leksin

Moscow State Region Social-Humane Institute, Moscow, Russia

It is well known that the Frobenius condition of the integrability of the formal KZ
equation

s = Y x0Ty 1)

1<i<j<n

on the complex linear space C" is equivalent to relations in Lie—~Chen—Kohno algebra
Ly [3] that generated by symbols X;;, i # j, X;; = X;; and the relations

[(Xij, Xiw + X0l =0, 1<i<j<k<n, (+

)
[Xij, Xw] =0, {i,5}n{k, 1} = 2. (%)

We consider a Lie subalgebra Ljs in Ly, generated by elements X; =
> icj.ijes Xij, where J is a subset of the set {1, 2, ..., n}. Let [J| be the number
of elements in the J. For X, the following relations are fulfilled:

(X, > X =0, VK C{1,2,...,n}, |[K|=k+2, ICK, JCK, |I|=|J] = k+1.
ICK
(3 * %)
These relations are are a part of Frobenius relations for the integrability of the Kohno
system [4]

dps(z1,.. .y 2n)
dy(z): X, AT y(z) @)
J,|J|Z_k+1 ! ¢J(Z17"~7Zn)

on the Manin-Schechtman space [6] of configurations of n > k hyperplanes in C¥,
where
Xy = Z Xij, |J|=k+1.
i<j, i€
Functions ¢s(z1,...,2,) are some linear forms on C". If n = k + 2, then relations
(***) are sufficient for the integrability of (2). For n = k + 2, we study the Kohno
systems obtained from integrable Jordan—-Pochhammer systems [2, 3]

aye) = 3 a2 ) )

S
1<i<j<n v J

where each matrix A;;(A) has the size nxn and with non-zero entries only places (¢, 7),
(4, 4), (4, ©) and (4, j) equals to complex numbers \;, —A;, —A; and A; correspondingly
that are taken from an ordered collection complex numbers A = (A1, Ag, ..., Ap). We
describe monodromy properties obtained systems. Some applications of these systems
for the computation of volumes of non-Euclidean polyhedrons are considered [1,5].

This work was supported by the programme “Leading Scientific Schools” (grant
no. HIII-8508.2010.1).
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Hidden Oscillations in Dynamical Systems
G. A. Leonov

Saint-Petersburg State University, Saint-Petersburg, Russia

The problem of hidden oscillations in nonlinear control systems forces to develop
new approaches of nonlinear oscillation theory. During initial establishment and
development of theory of nonlinear oscillations in the first half of 20th century, the
main attention has been given to the analysis and synthesis of oscillating systems for
which the solution of existence problems of oscillating regimes was not too difficult.
For many systems, the structure was such that they had oscillating solutions, the
existence of which was “almost obvious”. The arising of periodic solutions in these
systems was well seen by numerical analysis when numerical integration procedure
of the trajectories allowed one to pass from a small neighborhood of the equilibrium
to a periodic trajectory. Therefore, the main attention of researchers was concentrated
on the analysis of forms and properties of these oscillations (the “almost” harmonic,
relaxation, synchronous, circular, orbitally stable ones, and so on).

Further, so called hidden oscillations came to light. They are oscillations, the
existence of which is not obvious (they are “small” and, therefore, are difficult for
numerical analysis or are not “connected” with equilibrium, i.e. the creation of a
numerical integration procedure of trajectories for the passage from the equilibrium to
a periodic solution is impossible). In the midpoint of twentieth century M. A. Aizerman
and R.E. Kalman formulated two conjectures, which occupy, at once, attention of
many famous scholars.

Similar situation is in attractors localization. The classical attractors of Lorenz,
Rossler, Chua, Chen, and other widely-known attractors are those excited from
unstable equilibria. From the computational point of view, this allows one to use
numerical method, in which (after a transient) a trajectory started from a point of
an unstable manifold in a neighborhood of the equilibrium reaches an attractor and
identifies it. However, there are attractors of another type: hidden attractors, which
are a basin of attraction of which does not contain neighborhoods of equilibria.
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In this presentation, the application of special analytical-numerical algorithms for
hidden oscillations and hidden attractor localization are discussed. A construction of
counterexamples for Aizerman’s and Kalman’s conjectures and existence of hidden
attractor in Chua’s systems are demonstrated.

A Model of Collinear Tri-Atomic Chemical Reactions:
Billiard in the Angle with Potential

L. Lerman
University of Nizhny Novgorod, Russia

A geometrical model which captures the main ingredients governing tri-atomic
co-linear chemical reactions is proposed. This model is neither near-integrable nor
hyperbolic, yet it is, but it is still possible to analyze it, using a combination
of the recently developed tools for systems with steep potentials and with linear
theory near a center-saddle equilibrium. Thus, the non-trivial dependence of the
reaction rates on parameters, initial conditions, and energy is explained. Conditions
under which the phase space transition state theory assumptions are satisfied and
conditions under which these fail are derived. Mathematically, this model is a classical
Hamiltonian system with a quadratic potential with a saddle critical point defined
on the configuration space being an angle. The motion of the system follows this
Hamiltonian system up to the moment when it hits the boundary walls of the angle,
then it performs a jump by the billiard law.

The author acknowledges a support from RFBR under the grant 10-01-00429a,
RFBR and the administration of the Nizhny Novgorod region under the grant
09-01-97016a (regional-Povolzhye), the Ministry of Education and Science of the
Russian Federation (the contract NK-13P-13, Ne P945), and the Russian Federation
Government grant (contract No.11.G34.31.0039).

The talk is based on the joint paper with V. Rom-Kedar (The Weizmann Institute
of Science, Israel).

Bifurcation without Parameters

S. Liebscher
Free University of Berlin, Germany

We study dynamical systems with manifolds of equilibria near points at which
normal hyperbolicity of these manifolds is violated. Manifolds of equilibria appear
frequently in classical bifurcation theory by continuation of a trivial equilibrium. Here,
however, we are interested in manifolds of equilibria which are not caused by additional
parameters. In fact, we require the absence of any flow-invariant foliation transverse
to the manifold of equilibria at the singularity. Therefore, we call the emerging theory
bifurcation without parameters.

Albeit the apparent degeneracy of our setting (of infinite codimension in the space
of all smooth vector fields), there is a surprisingly rich and diverse set of applications
ranging from networks of coupled oscillators, viscous and inviscid profiles of stiff
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hyperbolic balance laws, standing waves in fluids, binary oscillations in numerical
discretization, population dynamics, cosmological models, and many more.

In this lecture we will give an overview of the behavior of flows near bifurcation
points without parameters and discuss new results on bifurcations of higher
codimension.

Subordinated Conditions for a Tensor Product
of Two Minimal Differential Operators

D. V. Limanskii

Donetsk National University, Donetsk, Ukraine

In this communication, we describe the linear space L(P) of minimal differential
polynomials Q(D) subordinated in the L>°(R™) norm to the tensor product

P(D) = P,(D) ® Py(D) := Py(Dy,...,D,,,0,...,0)- Py(0,...,0,Dp 41,...,Dp)

of two elliptic operators P;(D) and P»(D) acting on different variables.

We prove that if P;(§) and P»(&) are homogeneous symbols, then the space L(P)
is minimal possible, i.e., the inclusion € L(P) is equivalent to the equality Q(D) =
¢1 + coP(D) (see [L,2]).

We also consider the case of the product P(Di,D2) = pi1(D1)p2(D2) of two
ordinary differential operators. We show that if all the zeros of the symbol p;(&;) are
real and simple, the dimension of the space L(P) depends on the number of real zeros
of the symbol pa(&2).
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Periodic and Homoclinic Travelling Waves
on Lattices

P. D. Makita

University of Giessen, Germany
We consider the following one-dimensional system of infinitely many ODEs:
Gi + f'(q5) =V'(¢j+1 — ¢;) =V'(¢; — ¢51), JEZ.
We investigate the existence of travelling wave solutions, i.e., solutions of the type
q;(t) = u(j —ct),
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where ¢ > 0 is a real constant and w is a real-valued function. Then the problem is
reduced to the solving of the following forward-backward differential equation:

*u"(s) + f'(uls)) = V'(u(s +1) — u(s)) = V'(u(s) — u(s — 1)). (1)

T-periodic solutions of (1) are the critical point of a functional ®7. Under very natural
assumptions on f and V, non-constant periodic solutions are found by means of the
mountain pass or linking theorem. Solutions of (1) homoclinic to 0 correspond to the
critical points of a functional ®,, which, unfortunately, does not satisfy the so-called
Palais—Smale condition. We find a non-trivial critical point us, of &, as a limit of
some sequence {uy}g, where wuy is a critical point of ®y.

Mathematical Modelling and Simulation
of the Swelling of the Brain Cell
under Ischaemic Conditions

V. Malieva, M. Neuss-Radu, W. Jaeger
Interdisciplinary Center for Scientific Computing (IWR), Mathematics Center Heidelberg
(MATCH), University of Heidelberg, Germany

In this contribution, we are presenting our results on the mathematical modelling
of the brain cell swelling under pathological conditions during ischaemic brain infarct.
The swelling is a result of the osmotic transport of water across the cellular membrane
caused by the the ionic concentration difference between extra- and intracellular
spaces.

The cell and the surrounding membrane are modelled as deformable porous media
and are described by the Biot poroelasticity equations: a system of effective equations
for the flow velocity (Darcy’s law) and the deformation of the structure (linearized
elasticity equations). This system is coupled with the Navier-Stokes equations for
the extracellular fluid. Providing a transmission condition at the interface between
the porous medium and the free fluid flow is, in general, an open question. The use
of appropriate assumptions allows us to formulate suitable transmission conditions,
taking into account special features of the problem.

Numerical results for the reduced model are obtained by using software DUNE in
collaboration with the Scientific Computing Group of IWR, University of Heidelberg.

Implicit Difference Schemes
for Quasilinear Parabolic Functional Equations

M. Matusik

Institute of Mathematics, University of Gdansk, Poland

We present a new class of numerical methods for quasilinear parabolic functional
differential equations with initial boundary conditions of the Robin type. The numerical
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methods are difference schemes which are implicit with respect to the time variable.
We give a complete convergence analysis for the methods and we show that the new
methods are considerably better than the explicit schemes. The proof of the stability
is based on a comparison technique with nonlinear estimates of the Perron type for
given functions with respect to functional variables. Results obtained in the paper can
be applied to differential equations with deviated variables and to differential integral
problems.

Variational Gaussian Approximation
in the Fluctuating Field Theory

N. B. Melnikov
Central Economics and Mathematics Institute, RAS, Moscow, Russia
Moscow State University, Moscow, Russia

We consider the problem of the calculating of the partition function

Z = /exp(—F(V)/T) DV, 1)

which is given by the functional integral over an external field V;(r) that fluctuates
in a space j and in “time” 7 € [0,1/T], where T is the temperature.

Practical calculation of integral (1) requires an approximation of the fluctuating
field V. The simplest approximation is obtained by the saddle-point method, which
replaces the fluctuating field by its mean value V. However, the mean-field
approximation is insufficient for a quantitative description of cooperative phenomena
such as magnetism.

Based on the free energy minimum principle, we develop a method to calculate
functional integrals (1) with the help of the Gaussian approximation F(*) (V) =
Tr(AVTAAV) that takes into account “dynamics” (quantum effects) and nonlocality
of the fluctuations [1].

Theorem. The mean and covariance matrix of the wvariational Gaussian
approximation are calculated self-consistently from the system of nonlinear integral

equations
8F(V)> 1 <82F(V)>
=0, A= ) (2)
< ov ) 2 ov? @)

where the average (---)) is calculated with the Gaussian probability density
function proportional to exp(—F®) (V) /T).

In the spin-fluctuation theory, the system of equations (2) can have several
solutions below the temperature of the phase transition, which leads to a hysteresis in
the temperature dependence [2]. The renormalization due to higher-order terms of the
free energy F'(V') suppresses the critical fluctuations and yields a proper second-order
phase transition [3].

This work was partially supported by RFBR (grant no. 11-01-00795) and by the
Ministry of Education and Science of the Russian Federation (grant no. 2.1.1/2000).
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Ginzburg-Landau Energy with Prescribed Degrees

P. Mironescu
Université Claude Bernard Lyon 1, Lyon, France

(4(1)2 fQ(l -

1
We consider the simplified Ginzburg-Landau energy §f9 |Vul? +

|u|?)2. Here, Q is a domain in R? and u is complex-valued. On 92, we prescribe
|u| = 1 and the winding numbers of w. This is one of the simplest models of critical
equation leading to non-scalar bubbles. I will discuss existence/nonexistence results
for minimizers/critical points. The talk is based on results of Berlyand, Dos Santos,
Farina, Golovaty, Rybalko, and the lecturer.

Asymptotic Properties of Schur—Weyl Duality

S. Mkrtchyan
Rice University, Houston, USA

Vershik and Kerov in 1985 gave asymptotic bounds for the maximal and typical
dimensions of the irreducible representations of the symmetric group. It was
conjectured by Grigori Olshanski that the maximal and typical dimensions of the
isotypic components of the representations in Schur-Weyl duality accept similar
asymptotic bounds. The isotypic components of this representation are parametrized
by certain Young diagrams, and the relative dimensions of these components give rise
to a measure on Young diagrams, which we call the Schur—Weyl measure. Philippe
Biane in 2001 found the limit shape of a typical Young diagram with respect to the
Schur-Weyl measure. We will discuss a proof of the conjecture which is based on
showing that the limit shape found by Biane is the unique solution to a variational
problem.
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Asymptotic Representations of Solutions
of Elliptic Boundary-Value Problems
in the Vicinity of Coeificient Discontinuity Line

l. E. Mogilevsky

Moscow State University, Moscow, Russia

It is well known that presence of salient points in the boundary can lead to
singularities of solutions of boundary-value problems and to difficulties in the use
of numerical methods [1,2]. One of the ways to get over the problem is to find the
asymptotic representation of the solution in the vicinity of the irregularity of the
boundary [3,4] and then apply the mixed finite element method with singular test
functions.

Elliptic boundary-value problem in a plane for the unknown function = and
discontinuous coefficient € equal to £; in D; and &5 in Dy is considered. There are
conjugation conditions on the discontinuity line C' of the coefficient «:

{ Au= fi(M), M € Dy,

ou
Au= fo(M), M € Ds, [U”C =0, {687}] o =0, (1
where the discontinuity line C' of the coefficient ¢ corresponds to rays C; u Cs
outgoing from the origin and to the angular value wy. Let us assume that f is a
function from V!* N'V'2, where V! is the functional space with norm

Y2
) T T iy | 0 i st | 9|
= d T ——— | rd d TN ———— | rd
||UHVWI Z / go/r PRE r r+/ <p/r Do rdr| ,

Jtk<l | o 0 Wo 0

where [ > 0 is integer and ~ is real.
The following representation of the solution have been obtained:

1) M (1 2) () (2
urp) = Y oV e+ Y o el (9) + R(r ),

hy<v(D <hg hy<v® <hg

where h; = —y; +1; + 1, V](cj), C,gj), j =1,2, are constants and q)](cj)(ap) are functions
dependent on the angle variable only. There is an estimate for the smooth part of the
solution: [|R(r, @)y 12+1 < Cf(r @)l -

The work has been done with a financial support of Russian Foundation for Basic
Research (grant 06-01-00146-a).
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On Regular Solutions of the Cauchy Problem
for Abstract Parabolic Equations

A.B. Muravnik
For the Cauchy problem
ou
Frin Lu, z € (—o0,+00),t >0, (1)
uw(z,0) = up(z), x € (—o0, +0), (2)

where L is a Fourier multiplier with even symbol a(&), the solvability in classes of
generalized functions is well known (see, e.g., [1]).

Assuming that ug is bounded and continuous and there exist C,C1,Cs € (0, +00)
and a, a1, a3 € (1,400) such that

n ¢
L+ [g]e

<O

&
< , a f ea(g)t <
e |7

a/ 5 ea(é)t ~ b)
©) 1 Ies

a(§) <1

(3)

we prove that the solution is continuous in (—oo, +00) for any positive t.

To do that, we investigate the fundamental solution and, using the Wiener
Tauberian theorem, show that it decays at infinity sufficiently fast under
assumption (3).

References
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Concentrationk along Submanifolds for the Problem
—Au+ Au =y with Neumann Boundary Condition
in Bounded Domains

M. Musso
Pontificia Universidad Catdlica de Chile, Santiago, Chile

In this talk, we consider the equation —Awu + Au — un%m =0 in Q C R™ under
zero Neumann boundary conditions, where €2 is open, smooth, and bounded, while
A is a positive and large real number. We prove the existence of positive solutions
concentrating along a submanifold K of the boundary 092 with dim (K) = k, as
A — +oo. This is a joint work with M. del Pino and F. Mahmoudi.
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On the Existence of Extremal Functions
in the Maz'ya—Sobolev Inequality

A.l. Nazarov
Saint-Petersburg State University, Saint-Petersburg, Russia

Denote by = = (y;2) = (y1,9';2) a point in R =R™ xR" ™, n >3,2< m <
n — 1. By P we denote the subspace {x € R": y = 0}.

Let © be a domain in R™. By C5°(2) we denote the set of smooth functions with
compact support in Q. For 1 < p < oo, we denote by Wpl(Q) the closure of C3° ()

with respect to the norm ||Vul|, o. Obviously, WI}(Q) :I/f/l(Q) for bounded domains.

By definition, for 0 < ¢ < min{l, %} we put p% p: nf’;p. We discuss the
attainability of the sharp constant in the so-called Maz’ya-Sobolev inequality
1917~ 0llps 00 < N(p, 0, Q) - [ Vollp.0, )
which holds true for any v € WI}(Q) provided that
(a) Q is any domain in R™  for :éﬁ::; <o<l;

b)) QCR™"\ P for p>m, agmin{g((f:zg;%}, o #1; (2)
(c) QCR™\ (¢ x R*—™) for p=m, 0=0

(here ¢ is a ray in R™ beginning at the origin). Note that the case p < n, 0 =1, gives
a conventional Sobolev inequality.

[t is easy to see that for p < n and 0 < o < 1, the sharp constant in (1)
does not depend on Q and is not attained for any €2 provided that QNP # & and
W, () # W) (R™).

We consider considerably more complicated case QNP = &, 02 NP # &. First,
we analyze the attainability of the sharp constant in (1) for  being a wedge K =
K xR ™ (here K is an open cone in R™) or a “perturbed” wedge. Here we consider
all 1 <p <ooand0<o<min{l, 7}. Naturally, we suppose that () satisfies (2).

In the second part of the talk, we prove the attainability of the sharp constant
in (1) in a bounded domain for p = 2 and 0 < o < 1. Note that our requirements
on Of) are considerably weakened comparing with the recent paper of Ghoussoub and
Robert.

Remark. For m = 1, our problem of interest degenerates in a sense. On the another
hand, the problem for m = n corresponding to the Hardy-Sobolev inequality was
investigated in a number of papers (see the survey [1], where the history of related
problems and extensive bibliography was given).

This work was supported by RFBR grant 11-01-00825 and by the grant FZP
2010-1.1-111-128-033.
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Homogenization Limits of a Model System
for Interaction of Flow, Chemical Reactions,
and Mechanics in Cell Tissue

M. Neuss-Radu!, W. Jager!, A. Mikeli¢?
Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
2Université Lyon 1, Institut Camille Jordan, France

Experimental researches are providing increasing information on biophysical and
biochemical processes in cells and tissue. This information on cellular level has to be
included in the mathematical modelling of the dynamics of biological tissue. Describing
flow, transport and reactions of substances in and their interactions with mechanics
of solid structures on a cellular level leads to a coupled system of nonlinear partial
differential equations in complex geometric structures. The existence and uniqueness
of the solution to the microscopic system is given in [1].

Using experimental information, the relevant parameters of the microscopic system
have been determined in order to pass to a macroscopic scale limit. In the limit, when
the scale parameter goes to zero, we obtain the quasi-static Biot system coupled
with the upscaled reactive flow. Effective Biot’s coefficients depend on the reactant
concentration. Additionally to the weak two-scale convergence results, we prove the
convergence of the elastic and viscous energies. These results are obtained in [2].

In the talk, we will present important aspects on this topic.
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On Solvability of Boundary-Value Problems
for Strongly Elliptic Differential-Difference Equations
in Holder Spaces with Translations in the Arguments
of Low-Order Terms

D. A. Neverova
Peoples’ Friendship University of Russia, Moscow, Russia

Let @ C R™ be a bounded domain with boundary 9Q € C*. We introduce the
operator Rg = PgRIg, where I is the operator of extension by zero in R\ @, Py
is the operator of restriction to @, and the operator R is defined as follows:

Ru(x) = Z apu(x + h).

heM
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Here M is a finite set of vectors h € R™ with integer coordinates, while a;, are
complex numbers.
We consider the following problem:

—Au(z) + Rqu(z) = f(r) (v €Q) M
with the homogeneous Dirichlet condition

“’aQ =0, (2)

where f(z) € C7(Q), (0 <o < 1).
Assuming that operator Rq+ Ry, is positive, we prove the existence and uniqueness

of a classical solution v € C?*7(Q) of problem (1), (2).
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Asymptotics of the Einstein—Vlasov System
with Bianchi II Symmetry

L. E.-M. Nungesser

Max Planck Institute for Gravitational Physics, Potsdam, Germany

The late-time behaviour for the Einstein equation, which describes a gravitational
field coupled to the Euler equations, where the matter is described by a perfect fluid,
is well understood for spacetimes with a three-dimensional Lie group symmetry. My
goal is to extend these results to some cases of the Einstein—Vlasov system, where
the matter is modelled by a collisionless gas instead of a perfect fluid. In the talk, I
will present advances in the case of the Heisenberg group (the Bianchi type II).

Homogenization of the Discrete
Diffusion-Absorption Equation

G. P. Panasenko

University of Lyon, Saint Etienne, France

Consider the diffusion process in the interval (—R, R) containing a chain of “cells”
(points) absorbing some substance. The integral quantity of the absorbed substance
modifies the Young modulus of the chain. It means that the same force ® applied to
the chain generates smaller displacements of the “saturated cells” than in the case of
the non-saturated structure. Assuming that the distance between neighboring cells in
the equilibrium is a small positive parameter, we construct a continuous asymptotic
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approximation. We prove the estimate between the exact and asymptotic solution,
previously justifying their existence.
1. For a given R > 0, consider the equation

K
u'(x) = ath(x - Y )u(x) + f(z), =€ (-R,R), u'(-R)=0,u(R)=0,

Jj=0

where f € C([-R,R]), a>0,h>0,Y" = jhEy(1+qFu])~', j=0,.,K, and

Flu) = fOEU u(z)dx. Here 0 < Ey < R/2, ¢ > 0, K is integer, and h = 1/K.
For sufficiently small « and g, the existence of a solution is proved.
2. Consider the homogenized problem

1+ qF[u
P il

i (x) = . X[O’Yﬁ](x)ﬁ(x) + f(z), x€(-R,R), @' (-R)=0,a4(R)=0.
For sufficiently small «, the existence and uniqueness of a solution is proved. The
following estimate holds:

lu—dllc = O(h).

Critical Points of a Family of Functionals
Implied by a Stable Critical Point of a Single Limit

M. Parnet
University of Giessen, Germany

Consider a family of functionals Jy, A > 1, a single limit Jy, and a stable critical
point @ of Jy. Then, for A > 1, we get large critical points uy of Jy such that
|lux — @||x — 0 for A\ — oo. The family of functionals J is given by

1
Iy H =R, Jy(u) = 5““”? — k(u).

Here H is a real Hilbert space and the norms || - ||, are induced by a family of scalar
products (-,-)x, A = 1. Let Hy be a nontrivial closed subspace of H such that Hy # H.
Assume the following conditions for the family of the scalar products. The induced
norms are equivalent. If A = 1, then it coincides with the original scalar product of H.
The restrictions of the scalar products on Hy x H are independent of A and coincide
with the original scalar product. The family of scalar products cut the part contained
in Hy, more precisely, for A\, — o0, (||un||»,) bounded and there is a subsequence
(An,) and w € Hy such that w,, — win H. Here k: H — R is completely continuous,
ie.,
up, ~uwin H = k(up) — k(u).

The functional Jy is defined by the restriction of Jy on Hy, which is independent of A.
A stable critical point @ of Jy is, for example, an isolated critical point with nontrivial
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critical groups C.(Jo,u). There are more results in the special cases if @ is a local
strict minimum or if @ is a nondegenerated critical point. There are also more results
in the general case.

Spatio-Temporal Localization of Inner-Shell
Excitations in Free Molecules, Clusters, and Solids

A. A. Pavlychev, Yu. S. Krivosenko

Institute of Physics, Saint-Petersburg State University, Saint-Petersburg, Russia

Absorption of X-ray synchrotron and free-electron-laser radiation in matter is
accompanied by strong dynamic core-hole localization and temporary trap of the
electron ejected from a deep level within the finite-size potential barrier. As a result,
the symmetry of core excited states is reduced as the inversion symmetry possessing in
the ground state is broken. This is a very general property of core-excited polyatomic
compounds with equivalent atoms: their equivalence implies their equal probability
of excitation (the value averaged over large timescale), but not simultaneous core
excitation. This means that one-photon absorption of the quasidegenerate core levels
occurs in one of the equivalent atoms in a system, and the photoelectron wave function
U should be presented as a symmetry-adapted linear combination of atomic functions
¢n, Which describe photoelectrons emitted from n-th equivalent position in a system.
To take this “quasi-atomic-femtosecond” dynamic localization into account, different
time dependence for the atomic wave functions is assumed in this superposition [1,2]:

\Il(t) = chd)n(t*tn 77_)» (1)

where |c,| =1, t, is the beginning of the n-core-ionization, and 7 is the characteristic
timescale of hole delocalization. Assuming that |t, —t,,| > T, where T is a time
characterizing the interaction of photoelectrons with the anisotropic molecular (or
cluster) potential, we infer that the photoelectron flux is a sum of incoherent “atomic”
fluxes J =3, |on|”. In contrast, for |t, — t,,| < T, we infer that J = 1>, ¢n|’. The
variable phase approach is used to determine the functions ¢, (see, e.g., [2]).

The spatio-temporal (nanometric-femtosecond) dynamic localization of core-
excitations in molecule, clusters, and solids is supported by examining the
experimental data. In particular, the photoelectron angular distributions from N and
O s levels in fixed-in-space Ny and C'Oy molecules [1], the photoelectron induced
rotational heating of Ns [3], the Auger decay spectra of No [4] and the near F' 1s edge
X-ray absorption fine structure of free SFg molecules, free molecular SFg clusters and
SFg-solids. The results are discussed in more detail. It is shown that core-hole hoping
and electronic relaxation tend to restore the ground symmetry. In contrast, relaxation
of nuclear subsystem (in particular, excitation of low-symmetric molecular vibrations,
photoelectron-induced recoil, and fragmentation) tends to retain the broken symmetry.
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Bisectorial Operator Pencils
and a Bounded-Solutions Problem

A.V. Pechkurov

Voronezh State University, Voronezh, Russia

Let X and Y be Banach spaces. Let us denote the space of all bounded linear
operators acting from X to Y by B(X,Y).

Let F,G € B(X,Y). The function A — AF -G, A € C, is called an operator pencil.
We call the pencil A — AF — G bisectorial if there exist §p € (0,7/2] and hy > 0 such
that the resolvent set of the pencil contains the set

Q.10 :{)\ € C: |arg\| < g+60, g —dp <arg < 73777 +50} U{A € C: |Re | < ho},
and for all § € (0,0¢) and h € (0, ho) there exist M € R and m € Z such that
|[AF —G)™ LY = X|| < M1+ |AD)™, A€ Qsp.

Assume that there exists a linear subspace Y'! C Y such that it is complete in its
norm | - |l and ||yl < [lyllx for y € Y.

We say that the pencil X — AF — G is Y!-bisectorial if there exist 5y € (0, 7/2]
and hg > 0 such that the resolvent set of the pencil contains the set Qs, », and for all
d € (0,80) and h € (0, ho) there exists M € R such that

M

MNF-G) LY - X| < ——,
II( ) — X|| Y

A E 957;,.

Let us denote the set of all continuous bounded functions f : R — Y by C =
C(R,Y). Similarly, we denote the set of all differentiable functions u : R — X that
are continuous and bounded with their derivative by C! = C*(R, X).

We define the Green function by the formula

G - {Q}T Jee, MOF =@)7hdx or 50,
- 1 At o -1
fF:S_,h eM(AF — G)~tdX  for t<O0,

T 2w

where I‘({h (I's.,) is the lelt (right) boundary of the set €25, for some & € (0,dp),
h € (0, hg). The Green function exponentially decreases at infinity and has a summable
singularity at the origin.

Theorem. Let the pencil A — AF — G, A\ € C, be Y'-bisectorial. Then for any
function f € C(R,Y?!) the equation

(Fu)'(t) — Gu(t) = f(t), teR,
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has a unique solution u € C*(R, X). This solution can be represented in the form

+oo
u(t):/ G(t—s)f(s)ds, tER

— 00

Homogenization of Spin Energies
A. L. Piatnitski

Lebedev Physical Institute, Moscow, Russia
Narvik University College, Narvik, Norway

The talk will focus on homogenization and I'-convergence of surface and line
energies defined on lattice (spin) systems in Z¢ through bond interactions. We will
dwell on nearest neighbours interaction systems and consider both periodic and random
statistically homogeneous ergodic cases.

Given a smooth bounded domain G C R™ and a small parameter € > 0, we denote
eZ? UG by G. and, for a function u defined on G, consider the energy

Es(u) = Z 5d710ij(u1- — ’U,j)z, Cij 2 0, Cij =0 if |Z 7‘]| 7& E.
1,jEG.

Our goal is to study the limit behaviour of E, as ¢ — 0.

Blow-Up Solutions
to the Korteweg—de Vries Equation

S.|. Pohozaev
Steklov Mathematical Institute, Moscow, Russia

We deal with singular solutions to the Korteweg—de Vries equation which blow up
at finite time. We examine solutions both for initial-boundary value problems and for
the Cauchy problem.

We give an estimate of blow-up time depending on the boundary and initial
conditions.

In conclusion, we demonstrate the explicit form of the blow-up solution of the
Cauchy problem and show the mechanism of the blow-up of this solution.
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Smoothness of Generalized Solutions of Elliptic
Functional-Differential Equations with Degeneration

V. A. Popov

Peoples’ Friendship University of Russia, Moscow, Russia

We consider elliptic functional-differential operators with degeneration of the
second order. Unlike strongly elliptic functional-differential equations, smoothness of
generalized solutions of elliptic functional-differential equations with degeneration can
be violated [1,2]. Moreover, generally speaking, a generalized solution of such equation
does not belong even to the Sobolev spaces of the first order. We obtain a priori
estimates of solutions of elliptic functional-differential equation with degeneration [3].
Using these estimates, we prove that the orthogonal projection of a generalized
solution to the image of the difference operator belongs to the Sobolev space of
the second order in the subdomains (up to their boundaries) without the conjugation
points.
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Implicit Difference Methods for Nonlinear First-Order
Partial Functional-Differential Equations

E. Puzniakowska-Gatuch
Institute of Mathematics, University of Gdansk, Poland

We consider the nonlinear functional-differential equation

Opz(t,x) = f(tvxvz(t’x)»zgo(t,a:)aarz(ta z)) (1)

with initial condition
Z(t,(E) = QO(t,fE) for (t,l’) € [_bOaO] X [_ba b]v (2)

where @ = (21,...,%n), 02 = (0,2, .., 05, 2), bo € Ry, b= (b1,...,by), and b; >0
for 1 <4 < n. The functional argument is presented by 2z, ).

Classical solutions are approximated by solutions of suitable quasilinear systems of
functional-difference equations. The numerical methods are difference schemes implicit
with respect to time variable. Theorems on the convergence of difference schemes
and error estimates of approximate solutions are presented. The proof of the stability
is based on a comparison technique with nonlinear estimates of the Perron type.
Numerical examples are given.
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The differential equations with deviated variable and integrodifferential equations
are the particular cases of (1).
The lecture is based on the article [1].
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The Oriented Degree for Compact Perturbations of
Fredholm Nonlinear Maps and Bifurcation Theorem
for Elliptic Boundary Value Problem

N. Ratiner
Voronezh State University, Voronezh, Russia

Let f + k be a map from a Banach manifold X to a Banach space E, where f
is a proper nonlinear Fredholm map with zero index and k is a compact continuous
map. The map f generates the Fredholm structure on X, i. e., the collection of
charts {(U;, #;)} with property D(fo; ')(x) € GL.(F). Assuming that the Fredholm
structure is orientable and X is an oriented subatlas, we present the construction of
an oriented degree d(f+k, X", y), y € E\(f+k)(0X), based on the finite-dimensional
reduction method.

We use the degree to examine the local and global bifurcation for the following
elliptic boundary-value problem with real-valued parameter A:

F(z,u,...,D*™u) — \u= G(z,u,...,D*" tu, ), zcQ, (1)

Bj(x,D)u=0, j=0,...,m—1, z¢€0f. (2)

The above boundary-value problem generates the operator equation f(u) — Au —
g(u, A) = 0 in Sobolev spaces with a proper Fredholm map f and continuous compact
map g. We consider the supplementary equation

D (u, A) = (f(u) = Au—g(u, A), hr(u)) =0, 3)

where /. = [[u]|f2m11.5(q) — 7. A solution of Eq. (3) is a nontrivial solution to the
boundary-value problem (1)-(2) with [[ul[yy2m+1,0(q) = 7.

Theorem 1. Let Ay be an eigenvalue of Ly = Df(0) with spectral multiplicity m.

Then
0, if m even,

+ _
d(q’“D@O)_{ 42, if m odd.

There are two obstructions to detect the sign + or — in the above formula.
Changes of the sign may appear during homotopy of a Fredholm nonlinear map,
and there is no canonical choice of orientation on the neighbourhood of the point
(0,\g) € W2mHLr(Q) x R.

Corollary. If A\ is an eigenvalue of operator Lo with odd multiplicity, then Ay is a
point of bifurcation to problem (1)-(2).
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Theorem 2. Let W be the closure of the set of all nontrivial solution to the
problem (1)-(2), Ao be a bifurcation point, and Wy be the connected component
of W that contains (0,\o). Then Wy is unbounded or, if Wy is bounded, then it
contains finite set of bifurcation points (0,\;). The number of points (0,\;) € Wy
such that the eigenvalue \; has odd multiplicity is even.

An Approach to the Description of Rotating Waves in
Parabolic Functional-Differential Equations with
Rotation of Spatial Arguments and Time Delay

A. V. Razgulin, T. E. Romanenko

Moscow State University, Moscow, Russia

We consider the functional-differential parabolic equation with delay and rotation
of spatial argument under periodic boundary condition:

Ou _ pou K(1 0,t—T 2 1

i @fqu (I+~cosu(z+0,t—T)), u(0,t) = u(2m,t). (1)
This problem arises in the modelling of nonlinear optical systems with nonlocal delayed
feedback loop in the case of a thin ring aperture [1]. Here D > 0, T' > 0, K > 0,
v € (0,1), and € € [0,27). Our aim is to study rotating waves branching off the
homogeneous steady state as a result of the Andronov-Hopf bifurcation.

There are several approaches to dealing with the Andronov—Hopf bifurcation in
case of delayed partial differential equations. For instance, in [2], the authors use the
theory of semigroups combined with the implicit function theorem, while the method
of normal forms is applied in [3] to reduce the problem to an ordinary differential
system in the vicinity of the steady state. These methods are quite complicated
in applications. At the same time, we can simplify a technique, using a symmetry
property of a ring in Eq. (1).

In the present paper, we propose to apply a transition to rotating coordinates. This
idea is well known for the case of differential equations without delay as a powerful
tool to study travelling waves [4] and rotating waves [5]. Here we adopt the method
to delayed parabolic equation. As a result, we obtain a 1-D boundary-value problem
for stationary differential equation with deviated argument. This problem governs
the shape of rotating waves. Using the implicit function theorem, we have proven
the existence and uniqueness of rotating waves in a ring under usual Andronov-
Hopf bifurcation conditions and obtained the coefficients of the corresponding small
parameter expansion. The same results have been obtained for a 2-D statement in a
circle.

This work was supported by Federal Purpose-oriented Program “Scientific and
scientific-pedagogical staff of innovative Russia” for 2009-2013.
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Stability Analysis for Maxwell’'s Equation
with a Thermal Effect for One Spatial Dimension

V. Reitmann, N. Yumaguzin
Saint-Petersburg State University, Saint-Petersburg, Russia

We consider a microwave heating problem represented by a system, where the
microwave radiation is described by Maxwell’s equations and the heat transfer in
some material is represented by a diffusion equation.

For one spatial dimension, this problem is represented (as formulated in [1,2]) by
the system

Wi = Wee — o (0)wy, z€(0,1), t >0,

0; = Oy + o(0)w3, z € (0,1), t >0,

w(0,t) =0, w(l,t) =0, t>0, (1)
0(0,t) =6(1,t) =0, t>0,

w(z,0) = wo(x), wi(x,0) =wi(x), z€(0,1),

9(1'70) = 90(.%), T e (07 1)7

where w(x,t) is the solution component of the modified Maxwell’s equation, 6(x,t)
is the temperature, (@) is the nonlinear electrical conductivity, and wq(x), wi(x),
and 0y(x) are some given functions. Our main problem is the investigation of the
asymptotic behavior of the solutions of system (1). Under certain conditions, the
exponential convergence of solution components w, w, and 6 to zero was shown
in [1,3].

Further, we extend system (1) according to the heat equation in order to describe
the phase-change process. This leads to a modified heat equation with a monotone
enthalpy operator. We show that under certain conditions, all solutions of the system
describing the phase-change process converge to stationary ones.
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Simplified Approach to a Uniqueness Problem
of a Nonautonomous Planar System
E. Ron

Free University of Berlin, Germany

We present a dynamical systems approach for handling uniqueness, problems
in nonautonomous planar systems. The method is shown, while being applied to a
uniqueness problem for a ground state of the continuum limit of a strictly nonharmonic
multidimensional lattice. Although this problem, and even a more general version of
it, was already solved by Pucci and Serrin, we believe that our method sheds a new
light on it.

Our solution to the uniqueness problem has two parts. In the first one we show,
using classical phase plane analysis tools, that solutions in the first quadrant of the
plane cannot cross each other even though the system is nonautonomous. The second
part presents a local uniqueness result, i.e., the one that is independent of the initial
condition, when analyzing what happens near the origin. In addition, we demonstrate
the usage of our phase plane analysis tools by proving a simple non-intersection result
for some nonautonomous system in the plane.

Functional-Differential Equations with Rescaling:
the Garding-Type Inequality

L. E. Rossovskii
Peoples’ Friendship University of Russia, Moscow, Russia

Let ¢ > 1 and ©Q be a smooth bounded domain in R™ such that Q C ¢Q. We
consider the following functional-differential operator in :

Au(@)= 3 D [aapo(@)Du(x) + aasr (@)D?u(g ") + aas 1 () DPulga)] |
laf,|Bl<m
(1)

where the coefficients aqg;(x) are smooth functions in €, and establish some necessary
conditions and sufficient conditions for the Garding-type inequality

frmo) — cellulll,@  (ue CF(Q). @)

If A is a differential operator (e.g., angi = a@ag,—1 = 0 in (1)), then (2) is a
synonym of the strong ellipticity [1]. For a broader class of operators, inequality (2)
guarantees the Fredholm solvability as well as discreteness and sectorial structure
of the spectrum of the Dirichlét problem for the equation Au = f in Lo(Q2). The
fulfilment of (2) in the case of differential-difference equations was studied in [2].

Re (Au,u)r,(q) = alul

Theorem 1. Let inequality (2) hold for the operator A given by (1). Then the self-
adjoint part of the operator

v@) = Y € [aapo(@)u(x) + aap (@)o(g T T) + aap,—1(2)v(gr)]
lee],|Bl=m

is positive definite in Ly () for all £ € S~ 1,
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Introduce the notation anp(z) = Reaapo(z), bap(zr) = (aapi(z) +
¢ "aap-1(q7"7))/2,

q"/?b(x,€)
a(z,&)a(qg 'z, §)

(the summation is over all |al,|3| = m). It is a simple consequence of Theorem 1 that
a(z,§) is positive in Q.

a('rvg) = Zaaﬁ(x)faJrﬁv b(x,{) = Z baﬁ(x)€a+ﬁ7 T(.l?,g) =

Theorem 2. If there exists a smooth function 6(x,&) such that 0 < §(z,&) < 1 and

(@, ) < 67,8 (1 = 3(,€) (v e g e ),
then inequality (2) holds for the operator A given by (1).
Example 1. If r(z,&) < 1/4 for x € Q,£ € S~ 1, then A satisfies (2).

It should be noted that the condition r(§) < 1/4 coincides with the necessary
condition from Theorem 1 in the case where the coefficients ang;(x) are constants [3].

Example 2. Take 6(z,&) = ke 1* with (> +1)"! < k < 1 and Q =
{z e R": |z| < R} with R > ¢~ '\/Ink(¢? +1). Then we get the sufficient condition

(2, €)% < kel*!’ (1 - ke"f'x'z) (|| < R).

This example shows that |r(z,£)| is allowed to be arbitrarily close to 1 at some
points of the domain.
The research was supported by RFBR grant 10-01-00395-a.
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Analysis and Control of Photon-Induced Processes
E. Rihl

Free University of Berlin, Germany

Photon induced processes occur on different time scales, which may range from
milliseconds to the attosecond time regime. Ultrashort pulses of lasers are suitable to
study ultrafast photon induced processes in the time domain. This reveals the dynamics
of excited states, electron motion, electron emission, and molecular fragmentation. A
fundamental work on atomic, molecular, and nanoscopic systems is presented in this
context. In addition to the pure description of ultrafast processes by state-of-the-
art experimental approaches, it is possible to control them. This is accomplished by
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suitable control schemes, which include coherent control by using laser sources, pulse
shaping and chirping, as well as phase control of laser pulses. This allows one to
optimize photon induced processes, as evidenced by various examples from recent
researches.

Equiconvergence Theorems for Sturm—Liouville
Operators with Singular Potentials

I. V. Sadovnichaya

Moscow State University, Moscow, Russia

We deal with the Sturm-Liouville operator
d2

L=-2
dx?

+q()

with Dirichlet boundary conditions y(0) = y(m) = 0 in the space L3[0,7]. We
assume that the potential ¢ is complex-valued and has the form ¢(z) = u/(z), where
u € Ly[0,7]. Here the derivative is treated in the distributional sense. This class
of operators was defined in the paper of A. M. Savchuk and A.A. Shkalikov [1].
We consider the problem of equiconvergence (in C[0,w]-norm) of two expansion
of a function f € L[0,n]. The first one is constructed using the system of the
eigenfunctions and associated functions of the operator L, while the second one is the
Fourier expansion in the series of sines.

Theorem 1. Consider operator L acting in the space Lo[0, 7] with the Dirichlet
boundary conditions. Suppose that the complex-valued potential q(x) is equal to
u'(x), where u € Ly[0, 7] and

sup  sup dt < C < 40

0L O<h<T

/ u(t+z+h) —u(t+x)
t
h<tl<n

(we assume that u is a w—periodic function). Let {y,(x)}2; be the system of the
eigenfunctions and associated functions of the operator L and {w,(x)}%; be the
biorthogonal system.

For an arbitrary function f € L1[0, 7], denote

en = (f(z),wn(x)), cno:=+2/7(f(x),sinnz).
Then

=0.
Cl0,n]

lim
m—0o0

m 2 m ‘
Z CnYn(T) — \/; Z Cn,o sin(nx)
n=1 n=1

This paper is supported by grants RFBR 09-01-90408 and NSh 3514.2010.1.
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On Variational Description of the Trajectories
of Averaging Semigroups

V.Zh. Sakbaev
Moscow Institute of Physics and Technology, Moscow, Russia
Peoples’ Friendship University of Russia, Moscow, Russia

We consider the Cauchy problem for the Schrédinger equation with operator
L in the Hilbert space H given by the second-order differential expression Lu =
ai(g(x)%u) + La(@)Lu + %(a(m)u)]. Here g(x) and a(x) are real-valued step
function and g(z) is nonnegative. The Cauchy problem is ill-posed due to the vanishing
of the function g(x) on some set. In particular, the interval of the existence of the
solution depends on the initial data and can be finite.

The regularization of the degenerated operator L is the sequence L., € F =
(0,1), € — 0, of regularized self-adjoint operators with the coefficients g.(x) = g(z)+e
instead of g(x). We investigate the sequence T.(t), t > 0, € € E, ¢ — 0, of regularizing
dynamical semigroups of transformations of the Banach space X = B*(H) of linear
continuous functionals on the Banach space X, = B(H) of bounded linear operators
in the space H acting by the rules (T.(t)p, A) = (p,e "Lt A(e~L=t)*) (t,p,A) €
R x X x X,.

Theorem 1. Let the deficiency indices (n_,ny) of the operator L be finite and the
set of operators Ly, 0 € O, be the collection of maximal symmetric dilatations of the
operator L. Then the set of values of the sequence {T.(t)} is sequentially compact
in the weak-* operator topology of the space B(X) if and only if ny < n_. In
this case, the set of particular limits of the sequence {T(t)} in the above topology
belongs to the set of semigroups T%(t), 0 € O, acting by the rules (T%(t)p, A) =
(p,e” Lot A(e= ety (t,p,A) € Ry x X x X.. In the other case n, > n_, the set
of particular limits of the sequence {T.(t)} is empty.

Let W(E) be the set of nonnegative normalized bounded additive measures on
the algebra of all subsets 2¥ of the set E of regularization parameters, which is
concentrated in an arbitrary neighborhood of the limit point ¢g = 0 (see [1]). The
family of averaging dynamical maps T#(¢), t > 0, is defined as the Pettis integral of
the operator-function T.(t), € € F, by the measure y in the weak-* operator topology,

i.e., the equality (T*(t)p,A) = [(T.,(t)p, A)dp holds for any p € X, A € X,, and
E
t>0.

Theorem 2. Let L be a symmetric operator in the space H and L., ¢ € E, be its
regularization. Then the set of limit points of the sequence T.(t)p in the weak-*

topology coincides with the set |J T"(t)p for any (t,p) € Ry x X.
HEW (E)

The family of averaging maps T*(t), t > 0, does not possess the semigroup
property and for any ¢ > 0 the map T#(t) is not injective. However, the trajectory of
the averaging maps T#(t)puy,, t > 0, can be found as the solution of some variational
problem. Let S;"(X) be the set of nonnegative continuous linear functionals of the
space X, with the unit norm and X(H) be the set {p € S (X): Ju € H, |lul|x =1,
(0, A) = (u, Au) = (pu, A)}.
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Theorem 3. Let the conditions of theorem 2 hold. Then there exists a set M C W (E)
such that for any p € M the family of maps TH(t), t > 0, possesses the following
property:

There exists a function F, : Ry x S;(X)x X(H) — R such that for any ug € H
and ¢ > 0 the set C(t) = argmax(F,(t, T"(t)pu,,)) is diffeomorphic to the circle, and
there exists t; > 0 such that p,, = C(t) N C(t1).
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Navier—Stokes Equations:
on the Problem of Turbulence

R.S. Saks
Institute of Mathematics with CC USC RAS, Ufa, Russia

The Cauchy problem for the 3D Navier—Stokes equations with periodical condition
on the spatial variable is researched. The vector functions under consideration are
decomposed in Fourier series with respect to eigenfunctions of the curl (rotor)
operator. The problem is reduced to a Cauchy problem for the Galerkin systems
of of differential equations, which has a simplest structure in the considered basis.
The following programs are made up: reconstruction for the Galerkin systems and
numerical solution of the Cauchy problem. Several prototype problems are solved. The
results are represented in the graphic form, which illustrates the turbulent flows of
the liquid and the appearance of whirls. The Cauchy problem for the linear Stokes
equations is investigated. The families of Gilbert spaces are chosen. I prove that
the operator of the problem realizes isomorphism of the corresponding spaces. In
some cases the exact solutions of nonlinear Navier—Stokes equations are found.
Moreover, two Gilbert spaces are written out and [ prove that the sequence of Galerkin
approximations is limited at each of these spaces.
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Spectral Properties of Dirac Operators on (0, 1)
with Summable Potentials

A.M. Savchuk

Moscow State University, Moscow, Russia

We consider the Dirac operator L generated in the space (Lz[0,1])® by the
differential expression

d 0 1 a1 G2
B B= _
i 9 (—1 0)’ @ (q3 01)

and some regular boundary conditions. We assume that @ belongs to L, [0, 1] for some
p € [1,00) or to the Sobolev space W{[0,1] with some @ € [0,1/2). For such kind of
potentials, we establish an asymptotic behavior of eigenvalues and eigenfunctions of
the operator L. In the general situation (when the entries of @) belong to L1(0,1)), we
prove that the system of eigenfunctions and associated functions form a Riesz basis
in (L2[0,1])2.

The talk is based on joint works with A. A. Shkalikov.

Uniformization Problem in Nonlocal Elliptic Theory
A.Yu. Savin, B. Yu. Sternin

Peoples’ Friendship University of Russia, Moscow, Russia
Leibniz University of Hannover, Germany

Let M be a compact smooth manifold and G be a compact Lie group acting on M
by diffeomorphisms. On M, we consider nonlocal operators of the form

D :/ D,T,dg : C®(M) — C>(M), (1)
G

where Dy, g € G, is a smooth family of pseudodifferential operators (¢»DO), T} is the
representation of G by shift operators on the space of functions on M, and dg is the
Haar measure on G.

The operators of the form (1) will be called G-pseudodifferential operators. Note
that, if G is trivial, then the set of G-pseudodifferential operators coincides with the
set of classical pseudodifferential operators.

If G is a discrete group, then the integral in (1) reduces to a sum over G, and
the corresponding G-pseudodifferential operators were studied by many authors (e.g.,
Connes [1], Antonevich, and Lebedev [2] and others). The index formula for such
operators was obtained in [3].

Here we construct the elliptic theory for operators of the form (1) for a general
compact Lie group G. To this end, we represent our G-pseudodifferential operators
as classical pseudodifferential operators acting in sections of infinite-dimensional
bundles, whose fiber is the space of functions on G. This method (which we call
pseudodifferential uniformization) goes back to Ch. Babbage, and for finite groups
gives a finite system of equations. In addition, the obtained operator, which we denote
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by D, is G-invariant, and its restriction DEC to the space of G-invariant sections turns
out to be isomorphic to the original operator D. Now, if an operator D=1+4+D
satisfies the transversal ellipticity condition for G (this condition was introduced by
Atiyah and Singer [4] for operators acting in sections of finite-dimensional bundles),
then this implies the finiteness theorem (Fredholm property), i.e., the index of the
operator D =1+ D is finite.

We also apply pseudodifferential uniformization to obtain an index formula.
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Control of Delayed Complex Networks
E. Scholl

Institut fiir Theoretische Physik, Technische Universitat Berlin, Germany

Time delays arise naturally in many complex networks, for instance, in neural
networks, as delayed coupling or delayed feedback due to finite signal transmission
and processing times [1].

Such time delays can either induce instabilities, multistability, and complex
bifurcations, or suppress instabilities and stabilize unstable states. Thus, they can
be used to control the dynamics [2].

We study the synchronization in delay-coupled oscillator networks, using a
master stability function approach [3]. Within a generic model of the Stuart-Landau
oscillators (a normal form of supercritical Hopf bifurcation) we derive analytical
stability conditions and demonstrate that one can easily control the stability of
synchronous periodic states by tuning the coupling phase.

We propose the coupling phase as a crucial control parameter to switch between in-
phase synchronization or desynchronization for general network topologies or between
in-phase, cluster, or splay states in unidirectional rings. Our results are robust even
for slightly nonidentical elements of the network. We also discuss applications to
neural networks, in particular, small-world networks with inhibitory couplings, and to
chaotic laser networks.
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Adiabatic Limit in Ginzburg—Landau Equations
A.G. Sergeev

Steklov Mathematical Institute, Moscow, Russia

Hyperbolic Ginzburg—-Landau equations are the Euler-Lagrange equations for the
(2+1)-dimensional Abelian Higgs model, arising in gauge field theory. Static solutions
of these equations are called vortices and their moduli space is described by Taubes.
The structure of the moduli space of dynamic solutions is far from being understood,
but there is an heuristic method, due to Manton, allowing to construct solutions of
Ginzburg-Landau equations with small kinetic energy. The idea is that in the adiabatic
limit dynamic solutions should converge to geodesics on the moduli space of vortices
in the metric generated by kinetic energy functional. According to Manton’s adiabatic
principle, any solution of dynamic equations with a sufficiently small kinetic energy
can be obtained as a perturbation of some geodesic of this type. Our talk is devoted
to the mathematical justification of this principle.

The Description of Freak Waves
by Functional-Differential Inclusions

R. V. Shamin
Shirshov Institute of Oceanology of the RAS, Moscow, Russia
Novosibirsk State University, Novosibirsk, Russia

A.l. Smirnova
Peoples’ Friendship University of Russia, Moscow, Russia

In the present paper, we consider a dynamical system based on the functional-
differential inclusions describing ideal fluid flow with a free surface in the presence of
external influence. This dynamical system is applied to the analysis of large surface
waves, i.e., freak waves.

As freak waves is not a usual effect, there is an actual question about their stability.

In the paper, it was ascertained that the solutions describing freak waves are stable
in the sense of the initial data and external influence. Moreover, we carried out the
large scale computing experiments demonstrating that freak waves are quite stable
effect.

References

[1] Shamin R.V. Dynamics of an Ideal Liquid with a Free Surface in Conformal
Variables, J. Math. Sci. (N. Y.), 160, Ne 5, 537-678 (2009).

[2] Shamin R. V., Zakharov V.E., and Dyachenko A.I. How probability for freak wave
formation can be found, The European Physical Journal — Special Topics, 185,
Ne 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y.

65



Homogenization of Boundary-Value Problems
for the Laplace Operator in Perforated Domains
with Nonlinear Third-Type Boundary Conditions

on the Boundary of Cavities

T. A. Shaposhnikova
Moscow State University, Moscow, Russia

M. N. Zubova

Plekhanov University of Economics, Moscow, Russia

We consider the asymptotic behavior of the solutions wu. of the Poisson equation
in e-periodically perforated domain with a nonlinear third-type boundary condition on
the perforated part of the boundary. We suppose that the diameter of the sets, which
construct the perforation, is equivalent to e, where o > 1.

Let Q be a bounded domain in R™, n > 3, with a smooth boundary 92, Go be
the unit ball centered at the origin, and ¥ = (-1/2,1/2)". For 6 > 0 and € > 0,
we denote {z |6 'z € B} by 0B and {z € Q|p(z,00) > 2} by Q.. We set G. =
U.er.(acGo +ez) = Ujvz(f) G, where a. = Cpe®, Cp >0, a > 1, Y. = {2z € Z:

(aeGo +¢€2) 065 # @}, N(e) 2 de™™, d = const > 0, and Z is the set of vectors with
integer coordinates. We denote
Q. =Q\G., S. =0G., 09. = 02| JS..
In the domain )., we consider the boundary-value problem
—Au. = fix € Qe, Oue+e Yo(z,u) =0,2 €S, wu.=0,2€ 09, (1)

where f € L2(Q2), v is the exterior unit normal vector to S., v € R, o(z,u) is a
continuously differentiable function of variables x € Q and v € R!, o(x,0) = 0, and
there exist two positive constants k; and ko such that k1 < dy0(z,u) < ko.

1. Suppose that a € [1, -"5) and v > a(n — 1) —n.
The following theorem is proved:

Theorem 1. Suppose that u. € H'(Q.,09) is a solution of problem (1), a € [1, —5),
and v > a(n — 1) —n. Then ||luc||p,.) — 0 as e — 0.

n

2. Suppose that a = =5,
the boundary - value problem

v > a(n—1)—n, and ug € H*(Q) is a weak solution of

7AU0 + C’luo = f in Q,uo(z) =0on 89, (2)
where C; = (n — 2)C" 2w, w, is the area of the unit sphere in R".

Theorem 2. Suppose that u. € H'(Q.,09) is a solution of problem (1), ug is a
solution of problem (2), o = and v > a(n — 1) —n. Then u. — ug in H} ()
ase— 0.

_n_
n—2’
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Painting Chaos and Global Bifurcations:
Universality of the Lorenz Attractor

A. L. Shilnikov
Georgia State University, Atlanta, USA

We show that “painting” the kneading invariants for the separatrices of a saddle
allows for uncovering hidden structures, such as codimension-two T-points that
organize globally the parameter space and dynamics of a system (examples will be
presented) with the Lorenz attractor. This is a joint work with R. Barrio (University
of Zaragoza, Spain).

Pseudo-Hyperbolic Attractors

L. P. Shilnikov
Research Institute for Applied Math. & Cybernetics, University of Nizhny Novgorod,
Russia

Usually, by a chaoticity of a given system in some bounded domain, one
understands such behavior of its orbits that neither the system itself nor any system
close to it have a stable periodic motion. A formalization of this phenomenon in the
spirit of the Anosov’s hyperbolicity usually bears the name the “pseudo-hyperbolicity”.
Here, by a pseudo-hyperbolic attractor, a stable chain-transitive invariant set is
understood. Such an attractor always exists in an absorbing domain in accordance
to Conley-Ruelle. Here we consider the cases when the singular element of the
attractor is its periodic orbit. A simplest example here is a Lorenz attractor or spiral
attractor under the influence of a small periodic force. A feature of these attractors is
their wildness, that is the presence, as a rule, of homoclinic tangencies. Another
example is the attractor emerging as a result of the Andronov-Hopf bifurcation
leading to the emergence from a saddle-focus a saddle periodic orbit. To this type
of pseudo-hyperbolic attractors, a problem of bifurcations in 4-dimensional systems
with homoclinic tangencies leads. In the case where a saddle periodic orbit has two-
dimensional unstable manifold, a sufficiently general existence theory for pseudo-
hyperbolic attractors will be constructed with the indication of those cases where the
transitivity on the attractor takes place.

Fading Absorption in Semilinear Elliptic Equations

A.E. Shishkov
Institute of Applied Mathematics and Mechanics, NASU, Donetsk, Ukraine

We study the Dirichlet problem in the model domain Q@ = RY = {(2/,2n) : x5 >
0} for the equation
—Au+ h(2")|u|t u =0, q>1,

with singular data at the boundary T' = {# € RY : 2y = 0}. Here h(z’) is a smooth
degenerate potential: h(z') >0 Va' # 0, and h(0) = 0. In the case of h(|2|), we find
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a sufficient and necessary condition (criterium) for the flatness of h(s) near to the
point s = 0, guaranteeing the existence (nonexistence) of a “large” solution (solution
with boundary data w = oo at T'), of a very singular solution (nonnegative solution
with u(2’,0) =0 Va’' #0, and “strong” point singularity at = 0).

Joint results with Moshe Marcus.

Old and New in Complex Dynamical Systems
D. Shoikhet

Galilee Research Center for Applied Mathematics, ORT College Braude, Karmiel, Israel

Historically, complex dynamics and geometrical function theory have been
intensively developed Irom the beginning of the twentieth century. They provide
the foundations for broad areas of mathematics. In the last fifty years, the
theory of holomorphic mappings on complex spaces has been studied by many
mathematicians with many applications to nonlinear analysis, functional analysis,
differential equations, classical and quantum mechanics. The laws of dynamics are
usually presented as equations of motion, which are written in the abstract form of a
dynamical system:

((dz)/(dt)) + f(z) = 0,

where x is a variable describing the state of the system under study and f is a
vector-function of z. The study of such systems when f is a monotone or an accretive
(generally nonlinear) operator on the underlying space has recently been the subject of
much research by analysts working on quite a variety of interesting topics, including
boundary value problems, integral equations, and evolution problems.

In this talk, we give a brief description of the classical statements, which combine
the celebrated Julia Theorem of 1920, Carathéodory’s contribution in 1929, and Wolif’s
boundary version of the Schwarz Lemma of 1926 with their modern interpretations
for discrete and continuous semigroups of hyperbolically nonexpansive mappings
in Hilbert spaces. We also present flow-invariance conditions for holomorphic and
hyperbolically monotone mappings.

Finally, we study the asymptotic behavior of one-parameter continuous semigroups
(flows) of holomorphic mappings. We present angular characteristics of the flows
trajectories at their Denjoy—Wollf points as well as at their regular repelling points
(whenever they exist). This enables us by using linearization models in the spirit of
functional Schréder’s and Abel’s equations and eigenvalue problems for composition
operators to establish new rigidity properties of holomorphic generators, which cover
the famous Burns-Krantz theorem, and to solve a Nevanlinna-Pick-type boundary
interpolation problem for generators.
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Bifurcations of Solutions of PDEs

Ya. G. Sinai

Princeton University, Princeton, USA

We discuss several cases of bifurcations produced by solutions of linear and non-
linear PDEs.

Classical Solutions of Boundary-Value Problems
for the Vlasov Equations in a Half-Space

A. L. Skubachevskii

Peoples’ Friendship University of Russia, Moscow, Russia

We consider the Vlasov system of equations describing the evolution of distribution
functions of the density for the charged particles in a rarefied plasma. We study the
Vlasov system in R3 x R? with initial conditions for distribution functions fﬁ|t:0 =

fg(a:,p), [ = £1, and the Dirichlet or Neumann boundary conditions for the potential
of an electric field for z; = 0, where fg(x,p) is the initial distribution function (for
positively charged ions if 8 = +1 and for electrons if § = —1) at the point x with
impulse p, R} = {z € R®: z; > 0}. Assume that initial distribution functions are
sufficiently smooth and supp fg C (RIN BA(0)) x B,(0), 6, A, p > 0, and the magnetic
field H(z) is also sufficiently smooth and has a special structure near the boundary
z1 = 0, where R? = {z € R®: 21 > §}. Then we prove that for any 7' > 0 there is
a unique classical solution of the Vlasov system in R3 x R? for 0 < ¢ < T if || f§ || < ,
where ¢ = (T, 6, p, || H||) is sufficiently small.

This work was supported by the RFBR (grants No.10-01-00395 and No.09-01-
00586) and the analytical departmental special-purpose program “Development of
Scientific Potential of Higher Education” (No.2.1.1/5328).

On Asymptotic of Solutions of Elliptic Boundary-Value
Problems at Angular Points

A.P. Soldatov
Belgorod State University, Belgorod, Russia

An elliptic system with constant principal coefficients is considered in the angle
domain on the plane. The solution of this equation satisfies boundary conditions
(nonlocal in general) on the lateral sides of the angle. The following question is
discussed. Suppose that the right-hand parts of these boundary conditions have power-
logarithmic asymptotic. Then, under what angular conditions this property is valid for
the solution?
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On the Solvability of the Homogeneous Dirichlet
Problem with the p-Laplacian
Perturbed by a Difference Operator

0. V. Solonukha
Central Economical-Mathematical Institute, RAS, Moscow, Russia

We consider the essentially nonlinear Dirichlet problem

ApRqu(z) = fo(z)  (z€Q), (1)
u(z) =0 (x € 0Q). (2)

Here @ C R™ is a bounded domain with smooth boundary 90Q, p € (2,00),
1/p+1/q=1, fo € Ly(Q), and A, is the p-Laplacian given by the formula

Apu(z) = — Z ; (|8iu\p72 al-u) .

1<i<n

A bounded operator Rg : L,(Q) — L,(Q) is given by the formula Rg = PoRIg,
where
Ru(x) = Z apu(x + h),
heM

an € R, M C Z" is linite set of vectors, I is the extension operator of functions
from L,(Q) by zero in R™\ @, and Py is the restriction operator of functions from
L,(R™) to Q.

It is well known that problem (1), (2) without perturbation (i.e., for R = ) has
a unique solution. In a linear case (i.e., for p = 2), the existence and uniqueness
of a generalized solution of strongly elliptic differential-difference equation (1) with
boundary condition (2) was proved in [1]. We formulate sufficient existence conditions
for a generalized solution of nonlinear problem (1), (2) for any p € (2,00) and fy €
L,(Q). We also construct examples, which illustrate the distinction between linear

and nonlinear cases.
The research was supported by RFBR grant 09-01-00586.
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The Existence and C'-Smoothness of Local
Center-Unstable Manifolds for Differential Equations
with State-Dependent Delay

E. Stumpf
University of Hamburg, Hamburg, Germany

We consider a functional-differential equation

@(t) = f(x)

with a function f defined on an open subset of C'([—h,0],R"), h > 0, and taking
values in R™. Under mild smoothness conditions on f, the functional-differential
equation above induces a semiflow on a submanifold of C*([—h,0],R™). In particular,
the imposed smoothness assumptions are often fulfilled if f represents the right-hand
part of a differential equation with state-dependent delay. We discuss a result proving
that the semiflow of the functional-differential equation has continuously differentiable
local center-unstable manifolds at a stationary point. Additionally, we give an example
of a differential equation with a state-dependent delay, where the existence of such local
center-unstable manifolds may be used to prove the existence of a periodic solution.

Isoperimetric Problems in Three-Dimensional
Homogeneous Spaces and Integrable Systems

I. A. Taimanov
Sobolev Institute of Mathematics of the Siberian Branch of the RAS, Novosibirsk,
Russia

We discuss applications of integrable systems theory to the constructing of constant
mean-curvature surfaces in three-dimensional homogeneous manifolds different from
space forms.

The Garding-Type Inequality for Some Class
of Functional-Differential Equations

A. L. Tasevich

Peoples’ Friendship University of Russia, Moscow, Russia

We consider a functional-differential equation with the Dirichlet conditions and
with contractions and expansions of arguments:

Agu(z) = Z D®R.sDPu(z) (x€9Q), 1)

o], |BI<m

71



k
Ropv(z) = Z aapiv(qg 7)),

=k

where ¢ > 1 is an arbitrary fixed real number, 2 is a bounded domain in R™ with
smooth boundary and such that Q C ¢, and the coefficients aqg;(z) € C>(2) are
given complex-valued functions. The functions are supposed to be extended by zero
outside Q before applying R, to them. We obtain a sufficient condition, under which
the Géarding-type inequality

Re (Aru,u)r,(0) 2 cillullfpm o) — c2llull, @) (v € C5o(R))

holds. The significance of this inequality lies in the fact that together with the compact
embedding H™ () C Lo () it guarantees the Fredholm solvability and discreteness
and semiboundedness of the spectrum of Eq. (1) with the Dirichlet boundary condition.
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Periodic Solutions of Parabolic Problems
with Discontinuous Hysteresis

S. Tikhomirov, P. L. Gurevich
Free University of Berlin, Germany

As a prototype model, we consider the heat equation with hysteresis feedback
control on the boundary

ug(x,t) = Aulx, t), reQR, t>0,

? = H(u)(z,t), x€0Q, t>0,
Vag
where Q C R™ is a bounded domain with smooth boundary 0Q), v is the outward
normal to the boundary, and H is a discontinuous (nonlinear) hysteresis operator of
relay type. The model describes various processes of automatic thermal control. It
was originally proposed in [1]. Since then, it was treated by many mathematicians,
but the complete description of its long-time behavior remained an open question.

By reducing the problem to a discontinuous infinite-dimensional dynamical system,
we suggest an algorithm which allows one to construct all periodic solutions with
exactly two switchings on the period and study their stability.

We show that the following situations are possible depending on the characteristics
of hysteresis H:

(1) There is a unique periodic solution. It is stable, and it is a global attractor.

(2) Several periodic solutions with different geometrical structure and different
stability properties coexist.
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Finally, we discuss mechanisms of appearance and disappearance of periodic
solutions based on the discontinuous dynamics of hysteresis.

The talk is based on papers [2,3].

Sergey Tikhomirov is supported by the Alexander von Humboldt Foundation. Pavel
Gurevich is supported by the DFG project SFB 910 and the RFBR project 10-01-
00395-a.
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Integrodiiferential Equations in a Hilbert Space
and Their Applications

V.V. Viasov', A.S. Shamaev', N. A. Rautian?
'Moscow State University, Moscow, Russia
2Plekhanov Russian University of Economics, Moscow, Russia

We study integrodifferential equations with unbounded operator coefficients in a
Hilbert space

t
d’l;it) +/0 K(t _ 3)A2u(s)d8 = f(t), te Ry, (1)

u(+0) = @Yo, (2)

where A is a self-adjoint positive operator with compact inverse acting on a Hilbert
space H and the kernel K(t) is a scalar convex downwards decreasing function.
Moreover, K (t) belongs to the space Wi (Ry).

The equation (1) is an abstract form of the Gurtin-Pipkin integrodifferential
equation, which describes the heat propagation in media with memory and sound
propagation in viscoelastic media; it also arises in homogenization problems in porous
media (Darcy law).

We obtain the results on correct solvability of problem (1), (2) in weighted Sobolev
spaces on a positive semiaxis R,. Additionally, assuming that the kernel K (¢) has the
form

K(t) = i 7* (3)
2.5,

where ¢; >0, vj41 > v; >0, j € N, and v; — +o00 (j — +00), we provide the spectral
analysis of the operator-function L(\), which is the symbol of the equation (1). Let
e; denote the orthonormal basis composed of the eigenvectors of the operator A
corresponding to eigenvalues e, i.e., such that Ae; = aje; for j € N. The eigenvalues
a; are numbered in increasing order: 0 < a1 < ag < ...; an a, — +00 as n — —+00.
The spectrum of the operator-function L(\) can be represented in the form

o(L) = (US4 URS  Aen) U (US40, (4)
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where {A; |k € N} is a countable series of real zeros lying on the negative semiaxis
and At is a pair of complex conjugate zeros lying in the left half-plane such that

AP = A, of the meromorphic function 1,,(A) := (L()\)en, e,). On the base of spectral
analysis, we obtain the representation of the solution of problem (1), (2) as a series of
exponents corresponding to the eigenvalues of the operator-function L(\).

The detailed statements of the problems, formulations, and proofs of the results
can be found in [1-3].
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The Sunilower Equation
X.T. Vu

Free University of Berlin, Germany
We consider the delay equation:
ex”(t) + az'(t) + Bsin(z(t —e)) =0

with a, 3, > 0 on the space C := {f : [-¢,0] — R?, continous}.

This delay equation describes the motion of the sunflower, where z(¢) is the angle
of the plant with the vertical, € is the time lag depending on the geotropic reaction of
the sunflower, which is caused by the auxin concentration in the plant, and « and
are fixed real constants.

We want to study the global dynamical properties of this delay equation. In
particular, we are interested to find a global attractor.

For technical details, we refer the audience to the work of Marcos Lizana.

A Simple Market Model
N.D. Vvedenskaya

Institute for Information Transmission Problems IITP RAS, Moscow, Russia

We consider a caricature of a market, where at time ¢ there are b; buyers prepared
to buy a unit of a commodity at a price ¢; and s; sellers prepared to sell at this price,
ci—1 < ¢, 1 <i < N. A seller who did not get the trade at the price ¢; with some
probability moves to the price level ¢;_1, while a buyer who did not get the trade
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moves the price level ¢;;1. Presuming that the number of traders is > 1, we come to
the following system of ODE:

by = \p — apby — ymin b1, s1],
bi:abbi_l—abbi—’ymin bi,sil, 1 <1< N, (1)
$; = QsSi+1 — QeS; —ymin |b;, 8|, 1 <i <N,
SN = As — QSN _’Ymin [bN73N ;
bi(0) =b; >0, s;(0)=35; >0. (2)
Here \y/s >0, ay/s,7, and 0 < a5,y < 1 are parameters.

Statement 1. A solution of (1), (2) exists for all t > 0 and it tends to the single
stationary solution of (1) as t — oo.

A solution of (1), (2) obeys a kind of min/max principle. For example, if {b/}, {s;}
and {b}, {s/} are solutions of (1), (2), where

b;(0) < 7(0), s;(0) > s(0),

then for ¢ > 0,
bi(t) < by(t), si(t) > sj(t).

If N is large, N — oo, then we consider a system

b(0,t) = \p — 2 ymin [b(0,1),s(0,t)],
—2 — ymin [b(z,1),s(z,t)],
=a,————= —ymin [b(z,t),s(z,t)], )

——~ — ymin [b(l,t), s(l,t)],

b(z,0) = b(z), s(x,0)=5(x). (4)

For solution of (3), (4), a statement similar to Statement 1 is valid.

On the Generalized Riemann—Hilbert Problem
for Monodromy Data of a Scalar Equation

[. V. Vyugin, R.R. Gontsov

Institute for Information Transmission Problems IITP RAS, Moscow, Russia

The classical Riemann—Hilbert problem, i. e., the question on existence of a
Fuchsian system

d n B
EEY oy R ECh B Ma(p.0),
=1 ¢
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of p linear differential equations with prescribed singularities aj,...,a, € C and
monodromy

x:m(C\ {ai,...,a,},20) — GL(p,C), (1)

has a negative answer in the general case, as was shown by A. A. Bolibrukh. He also
obtained various sufficient conditions for the positive solution of the problem, one of
which is the following (see [1]).

Condition 1. If the representation (1) is the monodromy of a linear differential
equation

dPu Pty
of order p such that all its singularities aq,...,a, are Fuchsian, then the Riemann-

Hilbert problem has a positive solution.

Here we consider the generalized Riemann-Hilbert problem for linear systems
with irregular (non-Fuchsian) singular points, i. e., the question on existence of a
system of p linear differential equations with prescribed singularities aq,...,a, € C
and prescribed generalized monodromy data. By the latter, one means the monodromy
representation (1) and local meromorphic invariants at each singular point (see [2]).
Furthermore, one requires the coefficient matrix of a system to have a pole of
minimal order at each singular point, i. e., the pole order cannot be reduced by a
local meromorphic transformation § = T'(z)y of the dependant variable. The main
result is the following analogue of the sufficient Condition 1 for the problem under
consideration.

Theorem. The generalized Riemann-Hilbert problem for the generalized mono-
dromy data of a scalar equation (2) such that all ita singularities are formally
unramified, has a positive solution.
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Differential Equations [in Russian], MTsNMO, Moscow (2009).
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On the Linearization Problem for Neutral Equations
with State-Dependent Delays

H.-O. Walther

Mathematical Institute, University of Giessen, Giessen, Germany
Neutral functional-differential equations of the form
2/ (t) = g0y, my)
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define continuous semiflows G on closed subsets in manifolds of C2-functions under
hypotheses designed for the application to equations with state-dependent delay. The
differentiability of the solution operators G(,-) in the usual sense is not available, but
for a certain variational equation along flowlines, the initial value is well-posed. Using
this variational equation, we prove a principle of linearized stability, which covers the
prototype

2(t) = A (t + d(x(D))) + f(a(t + r(2(1)))

with nonlinear real functions A, d < 0, f, and r < 0. Special cases of the latter
describe the interaction of two kinds of behaviour, namely, following a trend versus
negative feedback with respect to a stationary state.

The author gratefully acknowledges support by FONDECYT project 7090086.

Stability Properties of Equilibria
and Periodic Solutions in Systems with Large Delay

M. Wolfrum

Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

Systems of delay-differential equations (DDEs) with large delay represent a special
class of singularly perturbed problems and can exhibit dynamics on different time
scales. Linearizing a DDE with large delay at an equilibrium point, we obtain a
spectrum that splits into two different parts. One part called the strong spectrum
converges to isolated points as the delay parameter tends to infinity. The other part
called the pseudo-continuous spectrum accumulates near the criticality and converges
after rescaling to a set of spectral curves called the asymptotic continuous spectrum.
In both cases, the limiting spectra can be approximated by the spectrum of a suitable
scale free problem. In this talk, we show how these results can be generalized to the
Floquet spectrum of certain periodic solutions of DDEs with large delay.

State-Dependent Delay Diiferential Equations for
Subspace Clustering

Wu J.

York University, Toronto, Canada

We developed a neural network architecture — projective adaptive resonance
theory (PART) — to detect low-dimensional patterns in a high-dimensional data
set. This theory has been applied for gene filtering and cancer diagnosis, neural
spiking trains clustering, ontology construction, and stock associations detection. The
key feature of a PART network is a hidden layer which incorporates a selective
output signal mechanism (SOS) that calculates the similarity between the output of a
given input neuron with the corresponding component of the template of a candidate
cluster neuron and allows the signal to be transmitted to the cluster neuron only
when the similarity measure is sufficiently large. This clustering architecture was
recently refined to incorporate adaptive transmission delays and signal transmission
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information loss (PART-D). The resultant selective SOS is based on the assumption
that the signal transmission velocity between input processing neurons and clustering
neurons is proportional to the similarity between the input pattern and the feature
vector of the clustering neuron. The mathematical model governing the evolution
of the signal transmission delay (the short-term memory traces and the long-term
memory traces) represents a new class of delay differential equations, where the
evolution of the delay is described by a nonlinear differential equation involving the
aforementioned similarity measure. This talk will describe the PART-D architecture
and the associated delay differential systems, and discuss future directions how state-
dependent delay differential equations can be used to design algorithms for clustering
in skewed subspaces or sub-manifolds of the data space.

Periodic and Relative Periodic Solutions
in Systems with Time-Delay

S. Yanchuk
Institute of Mathematics, Humboldt University of Berlin, Germany

In my talk, I discuss the existence and stability properties of periodic solutions in
delay differential equations with fixed delay. If delay is considered as a parameter, then
the number of coexisting periodic solutions grows linearly with the increasing of the
delay. Similar phenomenon takes place also in delay differential equations equivariant
with respect to the S! symmetry. In this case, instead of periodic solutions, the
number of quasiperiodic (relative periodic) solutions increases with the delay. I will
make some estimations on the number of such solutions and show an example of a
laser model.

Homogenization of Navier—Stokes Systems
for Electro-Rheological Fluid

V.V. Zhikov
Vladimir State University, Vladimir, Russia
Vladimir State Humanitarian University, Vladimir, Russia

Some fluids sharply change their rheological properties in the presence of an
electromagnetic field. The viscous stress tensor not merely becomes a nonlinear
function of the deformation velocity tensor D; it begins to essentially depend on the
spatial argument 2. An example is the tensor |D[P(*)=2D, where the variable exponent
is determined by the applied electromagnetic field; usually, the viscous stress tensor
has a more complicated anisotropic and non-variational structure. The mathematical
theory of electro-rheological fluids is exposed in the book [1].

The electromagnetic field can be assumed to be periodic in = with small period.
In this case, the homogenization problem arises; our main interest is to find a
homogenized (effective) viscous stress tensor, which must be independent of the spatial
variable due to the homogenization.
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Monodromy Operator Approximation for Periodic
Solutions of Differential-Difference Equations

N. B. Zhuravlev
Peoples’ Friendship University of Russia, Moscow, Russia

The following nonlinear equation with delay is considered:

fla(t), x(t —1)). 1)

It is supposed that a periodic solution Z of this equation with period T is known. The
Floquet theory is known to be valid for Eq. [1], which permits to describe the behavior
of the solutions in the field the of periodical solution Z in terms of monodromy operator
eigenvalues associated with the Z solution.

Unlike the case of ordinary differential equations, yet there is no a universal
efficient method to find Floquet multipliers for the casual Eq. (1) and solution % (at
least approximately). In [2—4], there are most sufficient results for such an approach.
If the period is not commensurable with delay, then considerable difficulties arise. One
of the ways to solve this problem is based on the approximation of an original problem
by means of a sequence of auxiliary problems. The problem of building of auxiliary
model problems has not been solved yet and still there is no evaluation method to
calculate the error within such an approach to the finding of Floquet multipliers.

A new way of approximation of the original problem is introduced in this paper. A
number of examples are provided.

z'(t)
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Optimal Feedback Control in A Stationary
Mathematical Model for the Motion of Polymers

A.V. Zvyagin

Voronezh State University, Voronezh, Russia

We will consider the weak formulation of the optimal feedback control problem for
the initial-boundary problem

Zvi@ — vAv — xDiv <Uk- 3(;5'3511)) +gradp=feV(v), ze€Q (1)
' k

divo =0, x €, (2)
vlaa =0, 3)

where v is the vector function of velocities at points of the domain Q in the space
R™ n = 2,3, with the boundary 0%, p is the pressure function, £(v) = (&) =

1 87)1- aﬂ)j
(2(81‘] + 8331'
kinematic coefficient of viscosity, and s is the delay time. The coefficient s is also
called the relaxation time of deformation.

Let ¥ : V — V* satisfy the following conditions:

)) is the strain rate tensor, f is the density of external forces, v is the

(71) its values are nonempty, compact, and convex;
(i2) it is semicontinuous and compact;

(i3) it is globally bounded;

(74) it is weakly closed.

Let V = {v € C*(Q)", divv = 0}, V be the closure of V in the norm of the space
W3i(Q)", and X be the closure of V in the norm of the space W3(Q)".

Theorem 1. Let the mapping ¥ satisfy (i1)-(i4). Then the boundary-value
problem (1)-(3) has at least one weak solution.

Let ¥ C V x V* be the set of weak solutions of problem (1)-(3). We will consider
an arbitrary cost functional ® : ¥ — R satisfying the following conditions:

(j1) there exists a number v that ®(v, f) > v for all (v, f) € %;

(jo) if vy, = vy in V and f,,, — f. in V*, then ®(v,, fi) < lm P(vp,, fin)-
Theorem 2. Let the mapping U satisfies (i1)-(i4) and the functional ® satisfies (j1)

and (j2). Then the boundary-value problem (1)-(3) has at least one weak solution

(s, f«) such that ®(vy, f.) = inf (v, f).
(v,f)EX
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Trajectory and Global Attractors
for Equations of Non-Newtonian Hydrodynamics

V.G. Zvyagin

Voronezh State University, Voronezh, Russia

It is known that the theory of attractors describes behavior of systems over time.
This behavior (so-called “limit regimes”) frequently characterizes the process as a
whole. The theory of attractors of dynamical systems has been thoroughly developed
and has numerous applications in the study of ordinary differential equations. This
theory was generalized by O. A. Ladyzhenskaya for the case of the two-dimensional
Navier—-Stokes system, which describes flat flows. Yet the three-dimensional Navier—
Stokes system demanded a new approach owing to the absence of results concerning
either the uniqueness of weak solutions or the existence of global strong ones. Such
an approach based on new concepts of trajectory attractors was suggested in [1,2].
This theory was applied by V.V. Chepyzhov and M.I1. Vishik in order to prove the
existence of a trajectory and global attractors for the three-dimensional Navier—Stokes
system.

However, the results of existence of trajectory attractors rests solidly on the
translation invariance of the trajectory space. Yet in the case of more complex
equations of non-Newton hydrodynamics translation invariant trajectory spaces were
not found; for this reason, a theory of trajectory attractors that does not need the
trajectory space to be translation invariant was developed in [3]. In [4], it was proved
that this theory is useful in order to establish the existence of a trajectory and global
attractors for the Jeffreys model of viscoelastic medium.

The report proposes to present:

(1) a general scheme to prove the existence of a trajectory and global attractors for
the spaces non-invariant under shifts of the trajectory;

(2) a proof of the existence of the trajectory and global attractors for the model
with the objective derivative;

(3) a visualization of the attractor of the perturbed Poiseuille flow (a visualization
of the attractor means a way to represent them graphically).
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Pojib IeHTPAJbHBIX 3JIEMEHTOB B NOCTPOEHNHU
ypaBHeHu# tTuna KumxHuka—3amosiogunKoBa

L. Aptamonos, B. A. lonybeea

MockoBcKMIM aBHaLMOHHbIM MHCTUTYT, Poccus, MockBa

Joxnan 6yner MOCBSLLEH MHOrOMepHOMY 0000LIeHUI0 KJACCHUUeCKOH Mpo6JeMbl
Pumana—I'nab6epra nocrpoenus cucrems! [lpadda Tuna Pykca ¢ CUHTYAAPHBIM JUBHU-
30pOM, olpejfie/IsseMbIM HA0OPOM T'UIEPIIOCKOCTeH OTPaXKeHHs OJHOH U3 KJacCUYeCKUX
cucrem KopHeil. [Ipu moctpoenun ypaBHeHui#l KHMKHMKa—3aMOJOAUUKOBA, ACCOLMH-
POBaHHBEIX C CHCTEMOH KOpHeH A,, paHee HCHOJb30Bajcs djeMeHT Kasumupa BTOpO-
ro Topsiika YHUBepcaslbHOH o6epThiBaollell aire6pbl COOTBETCTBYOLLEH anredpel JIu.
Jlas 1pyrux cucTeM KOpHeH Takue MOCTPOEHHS MPaKTHUYeCKH OTCYTCTBYIOT. B ciyuae
CUCTeMbl KOpHe# Tuna B, aHaJoruyHoe MocTpoeHue Obl1o moaydeHo A. JleliGmaHoM B
OJIHOIIapaMeTPUYeCKOM cJyyae, B TO BpeMs KaK ypaBHeHHe JOJIKHO 3aBHCETb OT JBYX
napamMeTpoB — 10 UHCJYy OPOHUT COOTBETCTBYIOLLEH cUCTeMbl KopHel. B noknazne Gyzmer
naHa koHCTpykuust cucteM [ldadda tuna Pykca (aHasoros ypaBHeHHH KHHKHHKA—
3aMoJIONYMKOBA) [/ Pa3jiHuHbIX CHCTEM KOpPHeH, OCHOBaHHAsl Ha LEHTPAaJbHBEIX 3Je-
MEeHTax COOTBeTCTBYIollel obepTriBatolled anre6psl Jlu nopsaka 6oJbluero ABYX.

HeauHeliHble NUCKpeTHbIe YpaBHEHUS THUIIA CBEPTKU
C AjpaMy CNeIMAJBLHOr0 BUja

C.H. Acxabos

YeyeHckui rocyaapcTBeHHbll yHuBepcuTeT, [po3Hbik, Poccus

B monorpaduu [1] paccMoTpeHbl OCHOBHBIE K/ACChl HEJMMHEHHBIX IHCKPETHBIX ypaB-
HEHHU THIIA CBEPTKH

F(naun) + Z hn—kuk = fn7

k=—o0

Up + Z hn,}gF(k)7U]€) = f’ru

k=—o00

Up + F n, z hn—kuk = fn

k=—o0

B BEIIEeCTBEHHBIX W KOMILJIEKCHBIX INPOCTPAHCTBAX fp, 1< p < 00. HOJIy‘—IEHI:I Teope-
Mbl O CylI€CTBOBAHHWH, €eAUHCTBEHHOCTH U crocobax HaXoxXJIeHHus peLLIEHI/If/Jl YKa3aHHbIX
ypaBHEHI/IIjI. B Hactosmein pa60Te, B cJjaydae daep CrneuruaJbHOro BHAA, JaHO AOIOJHEe-
HHUE U YCHJIEHHE HEKOTOPBbIX Pe3yJibTaTOB, KaCaroUlUuXCs, B HYaCTHOCTH, I'IpI/I6J'II/I}KeHHOFO
penieHnsas COOTBETCTBYIOIIUX HeJIMHEUHBIX AOUCKPETHBIX ypaBHeHHﬁ.

Cnucok aureparypsbl
[1] Acxa6os C.H. HenunHeiinble ypaBHeHus Tuna cBepTku. — M.: @uamartaut, 2009.
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HUccnenoBanue auHelHbIX au(depeHInatbHbIX
ypaBHEHUI U ONEPaTOPOB C HEOrPaHUYEHHBIMU
onepaTopHbIMU Ko3cdpuueHTaMu MeTOAaMH
CMIEKTPAJbHOU TEOPUU PA3HOCTHBIX OMEPATOPOB
Y JIMHEHHBIX OTHOIIEHUH

A.T. backakos
BopoHerkckui rocyfiapcTBeHHbIH yHUBepcuTeT, BopoHexk, Poccus

MHorue cBoiicTBa pellleHHH (OrpaHHYEHHOCTb, NOYTH MEPUOJUYHOCTH, YCTOHYH-
BOCTb) JINHEHHBIX TU(PepeHIMaNbHbIX YPaBHEHUH ¢ HEOTPAHUUEHHBIMH ONePaTOPHBIMU
K09(P(DULMEHTaMH TeCHO CBSI3aHBEl C COOTBETCTBYIOLIMMH CBOHCTBAMH AU((pepeHLHaNb-
HOTO orepartopa, onpe/e/IfI0llero paccMaTpHBaeMoe ypaBHeHHe U 1eHCTBYIOLero B Moj-
XonsieM (pyHKLHOHAJbHOM NPOCTpaHcTBe. Ero cBoficTBa 06paTHMOCTH, KOPPEKTHOCTH,
(bpenrosbMOBOCTH, CTPYKTypa CHEKTpa 3aBHUCAT OT PasMePHOCTH spa, KOPasMepHO-
CTH obpasa, UX [ONOJHAEMOCTH. BBoauTcs MOHSTHE COCTOSHUA JMHEHHOro OTHOLIe-
HHSI (MHOrO3HAUHOrO JIMHEHHOrO 0nepaTtopa), ¢ KOTOPbIM aCCOLMHPYETCst COBOKYMHOCTD
CBOHCTB ero finpa MU o6pasa. Mayuyaemomy nuddepeHraspHOMy onepatopy (COOTBeT-
CTBYIOLIIEMY ypPaBHEHHIO) CONOCTABJISIETCS JMHEHHBIH Pa3HOCTHBIH omepatop (pasHOCT-
HOe OTHOIIEHHEe) U NOKa3bIBAIOTCS YTBEPIKIEHHS O COBMAJEHHH MHOXKECTBA MX COCTOSI-
HMH, He0OXOAUMble U JOCTATOUHbIE YCJIOBUS UX (PpeArosbMoBocTH. IIpu fokasaTesnbcTBe
OCHOBHBIX Pe3yJIbTaTOB CYLIECTBEHHO HCII0Jb3yeTCsl CBOMCTBO IKCIIOHEHLUA/bHOH NHU-
XOTOMHHM CeMeHCTBa 3BOJIOLHMOHHBIX OIEPAaTOPOB M CIleKTpa/jbHas TeOpPHUs JHMHEHHBIX
oTHoweHu#. Jlesaercs 0630p pe3ynbTaToB 00 OLEHKe HOPM OOPATHBEIX OMNepaTopoB, O
NPUMEHEHHH MeTOZla MOJOOHBIX ONepaTopoB K MCC/eN0BaHUI0 AH((epeHHalbHbIX Olle-
paTopoB, CNEKTPAIbHON TEOPHH AH((epeHLHaNbHBIX OIepaToOPOB B BECOBBIX MPOCTPAH-
CTBaX (DYHKUUH.

O6 omHOW JINNITUYECKON KpaeBOU 3aaaye

C. N. BespogHbix

BbiuncnutenoHoit ueHtp PAH um. A. A. JopogHuubiHa, Mocksa, Poccus

B. . Bnacos

FocyaapcTeeHHbIi acTpoHoMuueckui MHCTUTYT uMm. M. K. LLtepH6epra, Mocksa, Poccua

B mnocko#t omHocBsisHOW 06sact G C KyCOUHO C3“-rnankoi rpanuted I', a €
(0,1), paccmaTpuBaetcsi ogHopoaHasi 3agaya Hupuxne (u(z) = 0, z € I') mas ypas-
Henusi [enbmronbua Au(z) — au(x) = b, roe —a He coBmajaeT ¢ KaKUM-JIH60 C00-
CTBEHHBIM UHCJIOM A omepartopa Jlamsaca, HOMOJIHEHHast HeJIOKAJbHBIM YCJIOBHEM
fr Oyuds = 1, rme ds—asnemeHT nauHbl ayru I', a §, —npousBomHasi 10 BHeI-
Heit Hopmanu k I'. [locsenHee yc/oBHe CBsI3bIBAeT MapaMeTpbl @ U b 3aBUCUMOCTBIO

-1
b(a) = [\G\ —a [ [o Galz, y)dedy| , rae Go(z, y) — dynkuus Ipuna, u, TeM cambM,
Jles1aeT paccMaTpUBaeMylo 3alauy 3aBUCsLIEeH JHIIb OT napamerpa a. Takas 3ajada usy-
yasach, B YaCTHOCTH, B [1] B cBA3K ¢ dusndyeckumu npunoxerusimMu. C UCoIb30BaHHEM
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pe3ynbTaToB U3 [1] ycTaHOBJIEHBI aCHMITOTHKH

b(a) = |T|""a+7|D|2+0 (a71/?), dd b

—b(a) = (2|T| \/§)71+O(a_3/2 ), a— oo,
a
a TakxKe aCHMIITOTHKa 1Jsi peleHus u(x) = u(z,a) BHyTpH G:

a
au(w, a) + bla) = |\Ff|6T<z>ﬁ [4@) + 0@ )], o - o,
rne r(z) — paccrosnue oT x € G 10 rpanuubl I', a ragkas Gynkuus A(x) obpaumaercs
B equHuLy npu x € ['; Bo Bcex Toukax x rmafgkoctd I' ¢ KPUBH3HOHU k (x) moJiydeHbl
CJIelIyIOHlHe ACHUMIITOTHKH:

_ -1 -2 -t —1/2 -1 .
dpu(z, a) = [T|" + [7l0) 2 =k (@) (2I0)) a2+ 0(a"), a4 — o

d

da

Jns yKasaHHOM 3alaud ¢ HUCKJIOUYEHHBIM HEJNOKaJbHBIM YCJIOBHEM (B 3TOM Ciydae
KpaeBasi 3ajlaua 3aBHCHUT OT JBYX MapaMeTpPOB, ¢ M b) YCTAHOBJIEHO, UTO [IJIsl TIOJIOXKHU-
TesnbHOCTH au(x) + b HeOOXOMUMO W AOCTATOYHO, YTOOLl b > 0 u a > —A;. OTMeTHM,
YTO HeO0OXOAUMOCTb 3THUX YCJOBHH Oblja U3BECTHA.

Pa6oTa BbinosiHeHa npu (puHaHcoBoi mopaep:kke PODU (mpoexkt Nel0-01-00837),
[Tporpammer OMH PAH «CoBpemeHHEIe TPo6/ieMbl TeOPETHYECKOH MaTeMaTHKH», Ipo-
eKT «OnTHMasbHble aJrOPUTMBI PellleHHs 3aau MaTeMaTHuecKol (pusuku» u [Iporpam-
Mbl Ned (yHHameHTabHBIX HccaenoBanui OMH PAH.

dpu(z, a) = [k (x) (4|l"|)_1 — 727 _z}a_3/2 +0(a?), a — oo.

Cnucok aureparypsbl
[1] Demidov A.S., Moussaoui M. An inverse problem originating from
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HeaokanbHble HUHTErpaJJbl © KBAHTOBAHHE N qacTuil

P.N. borpaHos
HayuHo-uccnefoBaTeNbCKUM UHCTUTYT ALEePHOM (PU3HKK
MockoBckoro rocynapcteeHHoro yHuBepcuteta uM. M. B. JlomoHocoBa, MockBa,
Poccus

M. P. borpaHos
MockoBCKHi rocyfapcTBeHHbIM YHUBEPCUTET WHXKeHepHOM akonoruu, Mockea, Poccus

[Ipunuun pomosHuTes pHOCTH H. Bopa mpuBes K KBaHTOBaHMIO (PU3UYECKHUX BeJH-
YMH B KBAaHTOBOH MeXaHHKe, K BTOPHYHOMY KBAHTOBAHMIO U K Pa3BUTHIO TEOPHUHU I0JI,
B 4yacTHOCTH, B pabotax H.H. Borosio6oBa u ero mkossl. Peub umer o kaaccuueckux
TaMUJbTOHOBBIX CHCTEMAaxX B OKDECTHOCTH MHUHHUMYyMa TaMHJbTOHHAHA. TpamiHlMOHHO
MMHHMYM OTBeYaeT CTalMOHApHOHW To4Ke B (pa3oBOM mpocTpaHcTBe. Mbl 0ObsCHSEM,
KakUM 00pa3oM TOUYKY MOXKHO 3aMEHHUTb Ha HEeTPUBHAJBHYIO MEPUOAHYECKYIO OPOUTY.

PaccMoTpuUM raMH/IbTOHOBO MONHHOMHAJNBHOE CTENEHH 1 BEKTOPHOE I0Jle Ha IJIOC-
KOCTH. 3a(pUKCHPyeM BBIMYKJbIH (AJ51 IPOCTOTH) OBaJ raMUJbTOHHAaHA. Bo BHeIIHOCTH
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3TOro oBasia Bbi6epeM k pPa3HUHBIX OBaJIOB, OMOJIOTHUHBIX HCXONHOMY M, COOTBeT-
CTBEHHO, k TOYeK — M0 OfHOH Ha Kaxknod kpuBod. Torma Haiimytess N dyHkuué f;(x),
N opHomapaMeTpH4ecKUX noarpynn nudpdeomopdrusmMoB Ha N pasaUuHBIX (Pa30BBIX
KPHUBBIX, TaK UTO

N
E fi (m gi(t)) = Const, (1)
i=1

T. €. IBJIIETCS MIePBBIM HHTErpaJjioM IBHXKeHus, pudeM N > k-n U HOCHTeNb HHTEerpasa
(1) MoxeT BO3BpallaThCsi B UCXOMHOE MOJIOXKEHHE.

Teopema. B cayuae obujeco nosodieHUs. BpEMS B03BPAUEHUS OUCHUBACMCS BEAUUU-
Hoti Const™N u mpebyem xeanmosarus ykasanuox N opbum.

3ameuanue. Bo3MOxXHO, 3TOT (DaKT CJIYyKHUT MPUYMHOH OTCYTCTBHSl yKa3aHHUHU B JIUTe-
paType Ha CylLleCTBOBAaHHe HEJOKaJbHBIX MHTErPaJoB M UX 3HaYeHHe IJI 3aJ4ad4 MaTe-
MaTH4yecKol (h)M3UKH, B 4aCTHOCTH, KBAHTOBOH MeXaHHUKH.

HccnenoBanue cjiaboro pemeHus 3agadyu
0 BO30YXKJeHUM IJTEKTPOMATrHUTHBIX KOJie0aHUMN
B 00JIaCTH C KMPaJbHBIM 3aroJHEHHUEM

A.H. Boronobos, 0. B. MyxapTtosa, I'. LizecuH

MockoBckuii rocyfapcTBeHHblM yHuBepcuteT M. M. B. JlomoHocoBa, Mockea, Poccus

Hactosias paboTa nocBsiilieHa UCCJAeI0BAHHUIO 3a1a4l 0 BO30OYKIEHUH dJIEKTPOMAr-
HUTHBIX KosleGaHMH 3aJaHHBIM JIOKAJbHBEIM paclpefeseHreM 3apsjoB U TOKOB B 006Ja-
CTH C HEOLHOPOJIHBIM KHDA/bHbIM 3aMOJHEHHEM, XapaKTepU3yIOLIUMCcsl MaTepHalbHbIMU
ypasrenusmu D = cE + iéB, H = i¢E + 1~ 'B.

O6nacTs (), B KOTOPOI paccMaTpuBaeTcs 3afaya, MoXeT ObITb J1MO0 KOHEUHOH ¢ pe-
TyJsIpHOH HeasNbHO MpoBoisllel rpaHuued I', mubo npencTaB/siTe cOO0H NONOJNHEHHE
K OTpaHMYeHHOH 00/1aCTH Qc peryJsipHo#l npueasbHO npoBoasllell rpanuuedt I'. Ilyctb
06/1acTb ) COCTOMT M3 KOHEYHOro umc/a nogodsacteit: = UJ_ €y, npuuem Bce u3
HUX, KpoMe OBbITb MOXKeT, moxo6acTtu {2y, KOHeUHbl, U obuias Ajas nopobaacted U u
Q,, rpanuua I'y,, perynspHa u orpanudena. Ilogo6nacte )y HeorpaHudeHa B ciaydae
6eckoHeuHoll obaactu 2. IlycTh nogo6nactu {2, UMEOT OJHOPOLHbIE KHpaJbHbIE 3aM0J-
HEeHUs C mapameTpamu: € = >0, u=pup >0, =&, 20,0 =01 20, tne k =0,q,
npuueM &y = 0 u o9 = 0, ecan nopodaacte {2y HeorpaHUYeHa.

Ecin B ofnacti ) vMelTCS CTOPOHHHE TOKH TMJIOTHOCTH j € Lo(0,T5), ToO
Haua/bHO-KpaeBas 3agaua A sekropos {E,H} = {E* H*} B Q), k = 0,q, ume-
eT BUJ

(e + E2) 2B ity B _ rotHE 4 0, BF = —j, x (0,7,

—i{kuk% + Mk% +rotEF =0, Q x (0,77, (1)
[EkvnHEkm = [Emﬂn”Ekm7 [Ekﬂn”zkm = [Emvn”Ekm? [Eovn” =0,
Eli—o = Eo, H|i— = H,.
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Ha ocHoBanuu merona lanepkrHa n0Ka3aHO CyLIeCTBOBaHHE eIWHCTBEHHOIO 0606-
LLIeHHOTr0 pelleHHs 3afaud (1) mpH ycsoBHH, YTO KOMMOHeHTH BeKTopoB Eg 1 Hy u ux
pOTOpOB MpHHAAJEXKAT NpocTpaHcTBY Lo(0, T ).

Cnucok gureparypsl

[1] Boromw6os A.H., MocynoBa H. A., [lerpos JI. A. MaremaTHuecKHe MONENH KHU-
paJibHBIX BOJIHOBOLOB, Mamemamuueckoe modeauposarue, 19, Ne 5, C. 3-24
(2007).

[2] Hrwso I., Jluouc 2K.-JI. HepaBencrsa B mexanuke u usuxe. — M.: Hayka, 1980.

H-Teopema nis TUCKPETHBIX KBAHTOBBIX KMHETHYECKHUX
ypaBHEHUH M UX 0000LEHNA

B. B. BepgeHnanux
MHCTUTYT npuknagHoi matematuku um. M. B. Kengpiwa PAH, Mockea, Poccus

C.3. Apxues

MockoBckui rocynapctBeHHblM yHUBepcuTeT UM. M. B. JlomoHocoBa, MockBa, Poccus

JokaspiBaeTcsi H-teopema /s 0000IIeHWH ypaBHEHHH XUMHUECKOH KHHETHKH.
BaxHbIMH (pU3HUYeCKHMH NPUMeEPaMH TaKoro 0600L1eHHUs SBJSIOTCS AUCKPETHble Mofe-
JIM KBAaHTOBBIX KHHETHUYECKUX ypaBHeHUH (ypaBHeHHUH YinHra—YjeH6eka) U KBAaHTOBBIH
MapKOBCKHI mpolecc (KBaHTOBOe cjaydailHoe OgyxpaaHue). JlokasblBaeTcs coBMaleHHUe
BpPeMEHHBIX CPEIHUX C 3KCTpeManssMu no boseumany nns ypaBHeHu# JIuyBuais u ux
00001IeHUH.

PaccmoTpum cuctemy ypaBHEHHH:

df; ~ .
E = Z (ﬁl —CYi) Ug (f) ng(a7va(f))7 i=1,2,...,n, (1)
(a,8) €S
rie « = (a1,q9,...,a,) U 0 = (61,02,...,0n) — BEKTOPHI C LeJOUYHUCIEHHBIMH HEOT-

prLaTeJbHBIMA KOMIIOHEHTAMH, 8 CYMMHUPOBaHHe BEAETCS 10 KOHEYHOMY MHOXECTBY
MYJIbTUMHAEKCOB (v, (3), CUMMETPHYHOMY OTHOCHTEJbHO mepectaHoBok a u (3; of (f),

G (f) — sanannble pyuxkuun ot £ = (f1, f2,..., fn), 0§ (f) = B (f) > 0; f(g > 0.
Ecan off (f) ne saBucur ot f, T0 MBI HMeeM cucTemy

df; . -~
a Y Bi— ) Kge Ve =120, K§=o0§K;. (2

dt
(a,8) €S
Ecau B (2) 96 _ 1y fi, TO MBI MOJIy4aeM CHCTEM ABHEHWH XUMHUUYECKOH KH-
of; i y y yp

HeTUKH. B XuUMHYecKOH KHHeTHKe paccMaTpPHBAIOTCS YCJOBHE [eTajbHOrO paBHOBe-
CHsl U yCJIOBHE IMHaMH4ecKoro paBHoBecHsi (ycsosue lllTiokkenb6epra—baTtuineBofi—
[Tuporosa). Mul (opmynupyem 0600ILIeHHe YCIOBHS AETAJNBHOTO PAaBHOBECHS AJIS CH-
creM (1) u o6o6iienue ycaosust Iltiokkenb6epra—batuinesoi—Iluporosa aist cu-
cTeM (2) ¥ 10Ka3biBaeM B 3THX ciydasx H-TeopeMmy, mpuueM mosydaercs, uto H (f) =
G (f) = (VG (©),1).
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Pa6ora BeimosiHeHa npu (huHaHcoBo# mognepke PODU (kon npoekra 11-01-00012)
u nporpammbl OTaesieHust MaTeMaTHuecKux Hayk PAH 3.5.

CocraBnenue MOJ€JIN IBUXKCHHUA IIJaHETOXO0da
C HUKJINYECKUM KOHTAKTOM C ITOBEPXHOCTBIO

B. A. BopoHuos, A. M. KpaiHos
®ryn «HMO wm. C. A. laBoukuHa», Mocksa, Poccus

IlpencraBasiloTcs XapakTepucTHKa U peKOMeHJalLMH [JISi Pa3BUTUS MeTOJOB Iepe-
JBHKEHHS MJaHETOX0Aa MPH MOHMXKEHHOH rpaBUTAallMKM HeOeCHOro Teja OTHOCHUTEJbHO
3eMHOH, a Tak»Ke BapHaHT UCHOJHEHHS TAKOTO THIA allapaToB.

YnpaB/ieHHe IBUKEHHEM IJIAHETOXOA C LUUKJIWYECKHM KOHTAKTOM C MOBEPXHOCTBIO
BBIMOJIHAIOT 32 CYeT BPallaTeNbHOrO IBHKEHHS KOJIECHOH Mapbl U KosebaTe/bHOTO ABH-
JKEHHUS] KAPETKH C MACCaXKHUPCKUM (IPY30BBIM) MOAYJIEM ITyTEM CO3/IaHHs JOTOJHUTEb-
HOH MPHKHUMHOU CHJIBI YIIPYTOH KOJECHOW Maphl K MOBEPXHOCTH 3a CUET BEPTHKANBbHOU
COCTaBJIsIIOLIEeH LeHTPOOeXKHOM CUJMbl ABUXKEHHS KapeTKH M COBMeLIeHHs ero ¢ yrnpyru-
MU KoJIe0aHUAMH KOJIeCHOH MNaphl.

Paspaborana maTemaTHuecKkas Mofesb epefBHKEHHs aNapara Kak yIpyroro KoJe-
ca ¢ MassTHHKOBBIM JIBHXKEHHEM MacChl C OCeBOH NofBecKoH. J[BUKeHMe ammapara pac-
cMaTpuBaeTrcsl B IJ10CKOCTH. [lnaHeToxon mpencrasJ/iseTcss Kak MexaHH4ecKas CHCTeMa
C TpeMs CTeleHs MM CBOOOMBI, MMelollas KOJECHYIO Mapy paiuycoM li, ABHKYLLYIOCH
M0 MOBEPXHOCTH M MasITHHK, MOJBELIEHHBIH B OCH KOJIECHOW Mapbl Ha PacCTOSIHUM la.
Kosnecnass napa umeerT Maccy mq M MOMEHT MHepuud [i; Macca MasTHHKa Mg, MO-
MeHT HHepuuu Iy. Mexny KoJecHOH napoil W MasTHUKOM NeHCTBYeT BO3MYILIAMOLIHH
MOMeHT M.

Paspaborana maTemaThueckasi MOJEJNb B3aUMOMEHCTBUS YIPYroH KOJECHOH Maphl
C TMOBEPXHOCTbIO B 3aBUCHUMOCTH OT IVyOWHBI MpocenaHus. I[loBepxHOCTb abCOMIOTHO
riaankas.

[TpousBopuTcs BBLIOOP MPOEKTHBIX MapaMeTpoB annaparta M LUKJIOTPAMMbI IOAAUH
ynpasJsioulero MomeHta M 15 BbisIBJeHUs] HauboJlee SHepPreTHUECKH BHITOAHBIX pe-
JKHMOB JBHXKEHHS.

IlokasaHbl MoJyyeHHble TPAeKTOPHU MPBIKKOBOTO ABHMXKEHHS W UX JHepreTHuecKHe
NpeuMylllecTBa 1/ ONpele/eHHOr0 N1arna3oHa CKOPOCTeH ABUXKEHHS.

IlapameTpuueckue npeacTaBJaeHUs
ncepgoaupepeHMAIBHBIX ONEPATOPOB M KpaeBble
3agauu njsa gudgepeHUaNbHBIX YpaBHEHUN
3JIEKTPOJAMHAMUKHA

HO. B. MaHgenb
XapbKOBCKUI HauuoHanbHbIM yHUBepcuTeT uM. B. H. KapasuHa, Xapbkos, YkpauHa

Peub uper o cBemennu 2D u 3D kpaeBblX 3ajauy A/ CTAalUMOHAPHBIX ypaBHEHHH
MakcBesiia Ha MJI0CKOMApaJs/ielbHbIX CTPYKTypaxX K IPaHUYHBIM THIIEPCHHIYJSPHBIM
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UHTerpajbHbBIM yPaBHEHUAM M UX MOC/enymolleM npubnauxeHHOM perieHuH. LleHTpass-
HbIFl MOMEHT MPH BLIBOJ€ I'PAaHUUYHBIX UHTErpajbHBIX YPaBHEHHH — HUCIO/Nb30BAHNE aHa-
JUTHYECKOro annapara NnapaMeTpU4eCKHX MpPeACTaBJeHHH MceBAOAH((epeHIHalbHbIX
Y MHTerpaJ/bHBIX OIepaTopoOB.

[Tpu npubnauKeHHOM pellleHHH TOJyYeHHBIX YPaBHEHHH HCMOJb3YIOTCS MOAM(HKA-
UM YMCJEHHBIX METO/IOB OUCKPETHBIX 0cobeHHOCTel. HalneHbl OLeHKH CKOpOCTH CXO-
OUMOCTH NPUOJIMKEHHBIX pelleHUH K To4HbIM. [locTpoeHHble MaTeMaTHUeCKHe MOJesn
NpelCcTaBJIsIOT NpaKTHUECKUH HHTepec. B yacTHOCTH, ¢ MX NMOMOLILBIO H3yuyeHbl 3ajauH
IU(PaKLKUH 3J1eKTPOMarHUTHBIX BOJH Ha NMPELKAHTOPOBBIX pelleTKax U NnpendpakTab-
HbIX KOBpax CeprHHCKOro, KOTOPEIE HCIOJMb3YIOTCS B COBPEMEHHOH aHTEHHOH TeXHHUKE.

O paspemmumocT adcTpakTHOrO I epeHuaJIbLHOT0
ypaBHeHHs JAPOOHOro Mopsaka ¢ rnepeMeHHbIM
onepaTropom

A.B. Mywak, X.K. Asag

Benropognckuii rocynapcteeHHbii yHuBepcuteT, Benropoa, Poccus

B 6anaxoBom mpocTpaHcTBe F paccMoTpuM 3amauy Tuna Komun

DY u(t) = A(t)u(t), te(r,b], 7=0, (1)
lim D27 u(t) = uo, 2)
. ¢
rze Di‘;lu(t) = m/(t—s)“’u(s) ds — JIeBOCTOPOHHHUH NPOGHBIH HHTETrpaJ

2
d

Pumana—JInysunns nopsinka 1 —a, 0 < a <1, 0< 7 < ¢, DY u(t) = %Ii;au(t) —

JIEBOCTOPOHHSIs1 pobHast npousBonHasi Pumana—JluyBunns nopsaka a, A(t) — auHeid-

HbIH, 3aMKHYTBIH OIlepaTop.

Ycaosue 1. Jluneiinoiii onepamop A(t) npu kascoom t € [0,b] umeem naommuyro 8 E
u He 3asucaujyro om t obaracmo onpedesenus D; npu arobom A ¢ Re X > 0 onepamop
M — A(t) umeem oeparuuenHoili 0bpammuoill, npuiem

_ M-
[(A = A1) 1”<T|1A|’ My > 0. (3)

Kpome moeo, das arwobeix t,7,s € [0,b] cnpasediuso nHepasencmaso
[(A(t) = A(T) AT (s)|| < M |t — 7|7, Mz >0, v € (0,1].

W3 ycnoBus (3) BeliTekaeT, uro onepatop A(t) npu 7 > 0 sBJseTCS reHepaTOpPOM
CUJIbHO HempepbiBHO# nosyrpynms e A1) u

eTA(t)H < Mg 6_677 Mz >0, 6 >0.
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Teopema 1. [Iycmo svinosnerno ycrosue 1 u ug € D. Toeda 3adaua (1), (2) umeem
eduHcmeenHoe peulerue.

JlokazaTenbCTBO paspewinMocTd 3anayd (1), (2) mpoBoguTcs METONOM, pa3BHBalO-
mum meton CobosieBckoro—Tanabe [1].

Pa6ota BeimosiHeHa B pamkax PLIIT «HayuHble ¥ Hay4HO-Tlenaroruueckue Kajapbl
uHHOBaIMoHHO# Poccuu» Ha 2009-2013 roab (rockonTtpakt Ne 02.740.11.0613).

Cnucok Jguteparypsbl
[1] CoGoanesckuii 1. E. O6 ypaBHeHUsX MapabosHyecKOro TUla B 6aHAXOBBIX MPOCTPaH-
creax, Tp. MMO, 10, C. 297-350 (1961).

IlepBble MHTErpaJbl NPUBOAMMBIX MHOTOMEPHbBIX
i depeHInANTBbHBIX CUCTEM

B. H. lop6ysos, M. b. Maenounk, A. ®. MpoHeBuy

lpopHeHckui MocymapcTeeHHbin yHuBepcuteT um. A. Kynanbi, FpogHo, Benapycb

PaccmaTpuBaetcs BrosiHe paspewnmas [1, ¢. 15-25] cuctema B mogHbIX auddepen-
nuasax

de =Y Aj(t)zdt;, zeR", teT CR™ (1)
j=1

OnHUM M3 OCHOBHBEIX METONOB HCCJE0BaHHS JHHEHHbIX HEABTOHOMHBIX CHCTEM $IB-
JISIeTCsl METOJ TPHBENEHHS] MX K JHHEHHBIM aBTOHOMHBIM CHCTEMaM C IOMOIIBIO TOH
WJIM HHOH rpymnnbl npeo6pasosanuii [2,3]. Mnes storo Metona npuHanmexur A. M. Jla-
nyHoBy [4], usyuaBiiemy oObIKHOBEHHbIE HEABTOHOMHBIE JIHHEHHbIE CUCTEMbI, KOTOphIE
HeOCOOeHHBIMH OTPaHUYEeHHBIMU JHHEHHBIMU NPeoOpa30BaHUsIMU MOTYT ObITh CBENEHBI
K JUHEHHBIM CHCTEMaM C MOCTOSIHHBIMHM KO3(duureHTaMH. TakdHe cHCTeMbl UM ObLIN
Ha3BaHBl NPUBOAUMEIMU. CylllecTBEHHOE Pa3BUTHe TEOPHsS OOBIKHOBEHHBIX NPHBOAMMBIX
cuctem mojyuusa B padore H.II. Epyruna [5]. B nanbueiiiiem moHsiTHe mpUBOIMMON
OOBIKHOBEHHOH AU(PepeHLInaNbHON CUCTEMBI ObLIO MTEPEeHeCeHO HA MHOTOMepHbBIe AU]-
(bepeHIHaIbHble CHCTEMBI (CM. 0630p JuTepaTyphl B [3]).

B nmauuoii paGote mo yactHbiM HHTerpaaam [l, c. 168-186] crnekTpajbHbHIM METO-
oM [6,7] nas cuctemsl (1), MPHBOAUMON OTHOCHTENBHO HEKOTOPOH TPyMNIbl HECTALHO-
HapHBIX NpeoOpa3oBaHuil G K aBTOHOMHOH CHCTeMe

dy=> Bjydt;, yecR" (2)

j=1

pellleHa 3ajfiaya O MOCTPOEHHM HHTerpajbHoro 6asuca. IlepBble UHTerpasbl CTPOSITCS
B 3aBUCUMOCTH OT KPaTHOCTH COOCTBEHHBIX UMCEJ 10 OOLIMM COOCTBEHHBIM M MPUCO-
eIMHEHHbIM BEKTOpaM MaTpHIL Cj7TpaHCHOHI/IpOBaHHbIX K MaTpuuam Bj, ¥ o marpHie
npeobpasoBanus g € G.

Tak, Hanpumep, B ciyuyae TMPOCTHIX JEMEHTAPHBIX AeNUTENEeH UMeeT MeCTO
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Teopema. [lycmo cucmema (1) npusoduma x cucmeme (2) ¢ nomowpbio mampuibl
npeobpasosarus g, a v — obwutl cobcmesennoiil sexkmop mampuy C;, Komopomy co-
omeemcmesytom cobcmeentoie uucaa N;, j = 1,m. Toeda nepsoimu unmeeparamu
cucmemnt (1) 6ydym Qynxyuu

Fy: (t,z) — ((Reug(t)x)2 + (Imyg(t)x)Q) exp( -2 iRe/\j tj)
j=1

V(t,z) e T xR™ u

_ Imvg(t)x -
F2 : (t7.’17) — arCtg m — ;Im)\J t]

V(t,z) e A, AC {(t,x): t € T, Revg(t)z # 0}.

Cnucok aurepatypsbl

[1] Top6ysos B.H. Unterpansl nuddepeniuanbabix cucreM. — [poano, 2006.

[2] Borpmanos 0.C. AcuMOTOTHYeCKHe XapaKTepUCTHKU pelleHHi JUHeHHBIX Au(de-
peHuuanbHbIX cucteM. — Tp. IV BcecowosH. mat. cwvesna, 1964, C. 424-432.

[3] Taitwyn W.B. Jlunefinble ypaBHeHHsl B MOJHBIX NMpon3BoaHbiX. — Munck: Hayka u
TexHuKa, 1989.

[4] Jlanywoe A.M. O6iiasi 3amauya 06 ycrofuuBocTH asuxkenusi. — M.-JI.. TUTTJI,
1950.

[5] Epyrun H.II. IlpuBonumsie cuctembl. — M.-JI.: MUAH um. B.A. CreknoBa, 1946.

[6] Gorbuzov V.N., Pranevich A.F. First integrals of linear differential systems.
Mathematics.Classical Analysis and ODEs (arXiv: 0806.4155v1 [math.CA]),
2008.

[7] Gorbuzov V.N., Pranevich A.F. R-holomorphic solutions and R-differentiable
integrals of multidimensional differential systems. Dynamical Systems (arXiv:
0909.3245 [math.DS]), 2009.

Hecdopmaabubie pemenus OIY

N. B. lNoptoukrHa
MHcTuTYT npuknagHoi matematuku um. M. B. Kengpiwa PAH, Mockea, Poccus

PaccmorpuMm 06blkHOBeHHOE nH((epeHLHalbHOE YPaBHEHHE
fay.y's..y™) =0, (1)

rie f(x,y,y',...,y"™) — 310 MHOrouJeH CBOMX nepeMeHHbIX. IlycTb mpu |z| — 0
(arg(z) orpaHuyeH ¢ ABYX cTopoH) ypaBHeHue (1) vMeeT (popmasbHOE pelleHHe

y:chxs,seKCC, (2)

rie K = {SO + myry + mare, mp,mo € Z, mi +mo > 0, my,mo > 0}, So € (C\Q,
r1 = (R1, (1,50)), 12 = (R, (1,50)), R1 = (a1, B1), Ra = (a2, fa2), Ri, Ry € 77,
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Re s > Re sg, mokasaTtesnu CTeneHH S YIOPSA0YEHBI 10 POCTY BELLECTBEHHBIX YaCTel, Cq
— KOMILJIeKCHbIe TocTostHHble. CliesiaeM B ypaBHeHHH (1) 3aMeHy 3aBUCHMOM epeMeHHOH

y = zm: cst® +u, (3)

S5=S0

rie m € Z4, Re(sym — so) = n, s ¥ ¢ — u3 popmyasl (2), mocse KOTOPOH OHO MPHUMET

BUJL

foliéfﬁ(x)u+g(xa7Lau/a"'7u(n)) 207 (4)

n

o o o _ v l
rae JMHeHHbIH nuddepeHunanbHbli onepatop L(z) = x E @z’
=1

v € (C, a; — KOMIIJIEKCHbIE TTOCTOSAHHLBIE, (DYHKU,I/IH g MOXKeT COAepKaTb JINHEHHbIE
m

d™u
o u,u’,...,u(") yJIeHbl BHA boz“1+md—m ¢ Revy > Rev, v1 € C, 0 < m < n,
T

by = const € C, HeauHeiiHsle mo w,u/,...,u("™ uneHs W 3aBUCSAIIME TOJBKO OT &
yseHsl. [Iycte B 3ameHe (3) Res,, > Rel;, tme A\;, i = 1,...,n, ecTb COOCTBEHHbIE
sHauyenust onepartopa L(x). Torma ypaBuenue (4) umeer (hopmasbHOE pelieHHe

U= chxs, ()

roe Res > Resp41 > n, Resp1 > Re,, s € K, ¢; — onHO3HaUHO omnpesesieHHbIE
KOMIIJIEKCHbIE TTOCTOAHHBIE.

Teopema 1. Ecau 8 ypasuenuu (4), komopoe noryuaemcs us ypasrenus (1) nocre
3amenvl nepemernoll (3), nopadok cmapuieti npousgodroti 8 L(x)u pasen nopsadxy
cmapuieti npoussodroti 8 cymme fo, mo psad (5) cxodumcs 04 AOCMAMOUHO MAAbLY
.

Crnucox aureparypbl

[1] Bprono A.JI. ACUMNOTOTHKH M pasJiodKeHHsl pelieHHH OObIKHOBEHHOro AuddepeH-
uuaabHoro ypasnenusi, YMH, 59, Ne 3, C. 31--80 (2004).

[2] Bprono A. I1., Toproukuna M. B. O cxonumocTr hopMasbHOTO pellieHHs] 00bIKHOBEH-
Horo nuddepeHiranbHoro ypausenus, Joka. PAH, 432, Ne 2, C. 151-154 (2010).

O mocTaTo4HBIX YCJIOBUSX CTAOMJIM3AIMU pelIeHUs
3agaum [{upuxie njs napaboIuyeCcKOro ypaBHeHHs

B.H. JeHucos

MockoBckuit rocyfapcTBeHHbIM yHUBepcuTeT UM. M. B. JlomoHocoBa, Mocksa, Poccus
B unanngpe D = @ x (0,00), rae @ — obnactb (BO3MOXKHO HeOrpaHWYeHHast) B
RN, N >3, paccMOTpuM 3anady dupuxne
N

Lu = (air(z, t)ug, ), —u =0 B D,
k=1 ' 1

ulpmo = up(x), €Q, ulg=0
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IJ1s pABHOMEPHO MapadoJ/iMiuecKkoro onepatopa L ¢ U3MepUMBIMH OTPAaHHUYEHHBIMU KO3(]-
¢uunenramu. 3neck S = 9Q x (0,00) — 60KoOBasi MOBEPXHOCTb UMAHHAPA D, ug(x) —
orpaHHueHHas HempepbiBHAs B () (QYHKLHs, pelleHHe OrpaHHYeHHOe U MOHHMAeTCs B
060061eHHoM cMeicae [1].

Teopema 1. Ecau pacxodumcsa uumeepan

/ cap (ET \Q) N dr = 0, (2)
mo pewernue 3adauu (1) umeem npeden
tlim u(z,t) =0 (3)

pasromepro no x na kKaxdom xkomnakme K 6 RY.

3nech B, = {|z — xo| < T} — 3aMKHYTBIH IIap C LEHTPOM B MPOHU3BOJNBLHOH TOUKE
xo paguyca 7, cap(E) — BHHepoBcKas eMKOCTb KoMmnakTa E C Q).

Coyuai#i, korna Ko ¢puuHeHTH B (1) He 3aBUCAT OT BpeMeHH ¢, U3y4eH B paboTe [2].

Mmeer MecTo cienyiommee yTouHeHHe TeopeMsl 1:

Teopema 2. Ecau pacxodumcs unmeepanr (2), mo ors peuwienus 3adaqu (1) cnpaseo-
AUBQ OUeHKA

Vit

|u(z,t)] < Cy exp {—Cg/ cap (B, \Q) -7V dr} 7

0

ede x — npoussoavras mouka @, Cp > 0 — nocmosaunasn, 3asucauias om N u
nocmosHKoll arsunmuurocmu Ay, Co > 0 — nocmosaunas, 3asucaujas om N, x, Ai.

Pa6ora BeinmosiHeHa mpu ¢uHaHcoBod nonnep:xkke PODU, nmpoekr 09-01-00446 u
OLIT «HayuHble u HayyHO-TIeparoruyeckue Kaapbl HHHOBauuoHHOH Poccun Ha 2009-
2013 rr».

Cnucok aureparypsbl

[1] Jlambikenckass O.A. KpaeBble 3agauu Mmarematuueckod ¢usuku. — M.: Hayka,
1973.
[2] Henuncos B.H. Joxs. PAH, 407, Ne 2, C. 163-166 (2005).

Tpu-tkanu, onpenensembie cucremamu OIY
A. A. [lytoHoBa

MocKoBcKHIM nefarortyeckui rocynapcTBeHHbId yHUBepcuTeT, MockBa, Poccus

PaccmarpuBaetcsi cucteMa 0OBIKHOBEHHBIX NTHU(D(PepeHIIHANbHBIX YPAaBHEHHH

ddit:fi(t,xj) (i,4,...=1,2,...,n). (1)

C sToil cHcTeMoil cBsizaHa Tpu-TKaHb W (1l,n,1), 3amaHHasi Ha MHOrooOpas3uu Imepe-
MEHHBIX ', t, coCTosillasl U3 CeMEHCTB A,: A1 : =¥ = const, Ay : t = const, A3 :
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Fi(t,a7) = ¢! = const, npuyem nocje/iHee ceMeHCTBO COCTOHT H3 MHTErpabHbIX KpH-
BBIX cHcTeMbl ypaBHeHHH (1). OTMeTHM, UTO TPU-TKAHH PACCMATPHBAIOTCS C TOUHOCTBIO
0 JIoKaJbHBIX AH((GeoMopdHu3MOB Ha Gasax c/oeHWE, o6pasyomux TKanb: t = t(t),
2t =2(27) n ¢ = c'(¢’), e ¢ — KOHCTAHTHl HHTErPUPOBAHMS.

Llenb paGoOTHl — UHTEPIPETUPOBATH CBOHUCTBA TPU-TKAHH B TepMHUHAX HuddepeHIIH-
aJibHbIX YpaBHeHHH M Ha060pOT.

Hsyuenue Benercss Metonom Kaprana—Jlanresa, 1o ecTh ¢ Tpu-Tkaneio W(l,n,1)
CBSI3bIBAETCSI CEMEHCTBO alalTHPOBAaHHBIX penepoB (KopenepoB). B aTom pemnepe nepas
CepHsi CTPYKTYPHBIX YpaBHEHHH TKaHH MMEET BUI:

dw" = w? Aw? + ptw™ A w" T
dw™ = w* Awy, +w" Awy, (2)
dw™l = Wt AR

rae u,v,... = 1,2,...,n — 1. DopMbl H KOMIOHEHTB OTHOCHTEJbHOr0 TeHzopa {u"},
BXOASIINE B 3TH YpaBHEHHS, BbIPaXKaloTCsl yepe3 4yacTHble NMPOU3BOAHBIE OT (DYHKLUH,
onpenensouux cucremy (1).

Teopema 1. Cucmema obvikHo8eHHbIX Ouheperyuarorolx YypasHeruLi a8MoOHOMHA 8
MOM U MOALKO MOM cAyYdae, ecau pu* U w, pasHbl HYAO.

C reomeTpHYeCKOi TOUKH 3peHHst TeH30p {p"} sBJISETCS TEH30POM HETOJOHOMHOCTH
HEKOTOPOF HEroJIOHOMHOF TPU-TKaHH, CBSI3aHHOM C paccMaTpHBaeMo# cuctemMod (¢ Tpu-
tKaHp0 W (1, n,1)).

Teopema 2. [lycmo S — noumu asmornomnasn cucmema O[]Y, Ora xomopoti omwHo-
cumenvHlll uHBapuanm t, obpauwjaemcs 8 Hyav, u W(c") — coomsemcmesyowas et
dsymepHas peeyaspras mpu-mxarv. Caedyroujue yYycao8us 3K8UBANEHMHbL:

(a) mensop {t.} obpawaemcs 6 Hyav;
(6) dw" = 0;

(8) ypasnenus mraneti W(c*) npusodsmes Kk KaQHOHU4ECKOMY 8UOY OOHOBPEMEHHO
Ha 8cem mHo2006pasuu M;

(r) cywecmsyem donycmumoe npeobpasosanue, npu KOmopom cucmema S npuso-
oumcs K asmoHomMHoMmy 8uUdy.

3/iech MOYTH aBTOHOMHOH Mbl Ha3blBaeM CHCTEMY, JJIs KOTOPOH BBIMOJNHSIETCS YCJ/IO-
Bue p* =0, a t, U t, — BEJHUUMHbI, BXOJSIIME BO BTOPYIO CEPHIO CTPYKTYPHBIX ypaB-
HeHu# Tpu-tkaun W(l,n,1).

Cnucox aureparypbl

[1] Akusuc M.A., Tonbnbepr B.B. O mMHOroMepHBIX TPHU-TKaHSX, 06pPA30BaHHbIX IO-
BEPXHOCTSIMH pasHbIX pasMmepHocTel, Tp. eeomemp. cem. (BHHHTH AH CCCP), 4,
C. 179-204 (1973)).

[2] AkuBuc M.A., llenexos A. M. MHoromepHble TPHU-TKaHH H HX MPHIOKEHHS. —
Tsepb: Tsep. roc. yH-t., 2010.
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ABTOpe30oHaHC B CHCTeMaXx €O CJabou auccumnauuen
N. A. Kanaxkux

MHCTMTyT MaTeéMaTUKH C BblHUCJIUTENIbHBIM LEHTPOM
Ydpumckoro HaydHoro ueHTtpa PAH, Yda, Poccus

ABTOpe30HAHCOM NPUHSITO HAa3bIBAaTb SIBJEHHE, KOTOPOE CJAY4YaeTcsl B HEJMHEHHBIX
OCLMJ/IJIATOPAX MOJ AeHCTBHEeM MaJsblX BO3MYLIEHHH C MepPeMEeHHOM 4YacTOTOM HaKaukKH.
CyTb €ro COCTOMT B 3HAYMTEJbHOM H3MEHEHHH aMIUIUTYIbl KoseGaHui (1H60 SHeprun)
CUCTeMBbl 6Jarogaps pe3oHaHCY, KOTOPbIH aBTOMAaTHYeCKH MOAAepKHUBAaeTCs B TeYeHUU
IJIMTebHOr0 BpeMeHU. B HenMHelHOH (hM3KKe U3BECTHO MHOTO MPUJIOKEHUH 3TOTO $IB-
Jenus. HaxoxneHue ycjoBUH CYIeCTBOBAHHSI TAKUX COCTOSTHHE COCTaBJIsIET OCHOBHYIO
3aJa4y TeOpPHUU aBTOPE30HAHCA.

B nokname aHanusupyloTes CHCTeMbI cO cabol AucCHUNAlMeld Ha TpUMepe ypaBHe-
nuit Jlanpay—Jlndumuua u ypaBHenuii bioxa. DTu ypaBHeHUs TPUHSATO UCIIOJIb30BaTh
B KayecTBe MOAXOASIIMX MaTeMaTHYeCKHX MOJeJied B 3ajadyaX MarHUTOAWHAMUKU. Ha-
JIUUMe OUCCHUMALMM B TaKUX CUCTeMaxX JesaeT HeBO3MOXKHBIM IMOSIBJIeHUe aBTOPE30HaH-
ca TpH TMOCTOSIHHOH aMIVINTyne Bo3MylleHHs. [lokaszaHo, UTO AMCCHTIATHBHBIE MOTEPH
MOXHO KOMIIEHCHPOBATh MeJJIeHHBIM POCTOM aMIJIUTYAbl Bo3MyIleHus. [Ipu aTom poct
aMILIUTYABl B pelleHUH 00si3aH pe30HAHCY U onpefessercs AedopManyedl yacTOTh Ha-
KauKH.

[Tony4yaemble pe3ysbTaThl OCHOBAHBI Ha HCCJENOBAHMM MOJEJIbHBIX HEABTOHOMHBIX
HeJIMHEHHBIX yPaBHEHUH IV1aBHOTO pe3oHaHca. /11 HUX MOCTPOEHB! pelleHus ¢ Heorpa-
HUYEHHO pacTylled aMINUTYLOH, /s KOTOPbIX H0Ka3aHa YCTOHUYMBOCTb MO JISAMyHOBY.
Takue pelleHUs] ONMUCBIBAIOT HauaJbHBIM 3Tall 3aXBaTa B aBTOPE30HAHC.

HekoTtopbie KoadpuiinieHTHbIEe 00paTHbIE 3a1a4yu
IJig TapadoauyecKux ypaBHEHUN

B. Jl. KambinuH, T. WU. ByxapoBa

HauroHanbHbIM UccnepoBaTeNbCKUM aaepHbid yHUBepcuTeT «MUDU», Mockea, Poccus

B noknaze paccMaTpuBaloOTCs BOIPOCH CYLIeCTBOBAHUS U e[JUHCTBEHHOCTH pelleHUH
00paTHBIX 3ajay olpefie/leHHsl OJHOTO U3 HeU3BeCTHBIX KO3(h(ULHEeHTOB B Napabo/uye-
CKOM ypaBHEHHH

p(t, x)uy — alt, ©)uge + b(t, x)u, +d(t, x)u = f(t,z), (t,z) € Q=1[0,T]x[0,]. (1)
[Ipennosnaraercsi, YTO 3afaHbl KpaeBble YCJIOBHS
u((),x) - UO(x)ax € [Oa l]a u(ta O) = ﬂl(t)7u(t7 l) = ﬂ2(t)at € [OvT]v (2)
a TakxKe JOMOJHHUTENbHOE YCJIOBHE HHTETPaSbHOrO HaOJMIONEHHS
T
[ uttonde = o(a). (3)
0
B sapauax (1)-(3) HeusBecTHBIMH siBAsitOTCS (QyHKUMS w(f, ), a TaKXKe OLUH U3
Koa(pduuuentoB a(t,z) = p(x), b(t,xz) = p(z) uan d(t,x) = p(z), 3aBUCALIHUHA TONBKO

OoT .
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HccnenoBanue CyliecTBOBaHUSI U €IMHCTBEHHOCTH PelleHHH paccMaTpUBaeMBbIX 3a-
Jlad B JIOKJaje PoBoAnTCs B Kaaccax Co6osieBa MpH MHHUMAJbHBIX TpeGOBaHUSAX TIafl-
KOCTH Ha H3BeCTHble BXOJHble AaHHble 3THX 3ajau. Kak oka3anoch, OMpelesiouyo
pOJib B TaKHUX HCCJENOBAHUSIX MOTYT CHIrPaTh arpHOpPHbIE OLUEHKH HOPM pelleHHH mpsi-
mo# 3amaur (1)-(2) B mpoctpancTBax CoGosieBa ¢ IBHO BHIYMC/JIEHHBIMH KOHCTaHTaMHU.

Hanpumep, Bompoc o cyliecTBOBaHUU pellieHHs] 0OpaTHOH 3agaund MOXKeT ObITh CBe-
JIeH K BOTIPOCY O Pa3pellMMOCTH HEKOTOPOro OMepaTOPHOrO ypaBHEHHS

p= A(p) (4)

B ONpefeseHHOM 0aHaXOBOM MPOCTPAHCTBe, U 3HAHHME TAKUX KOHCTAHT MO3BOJISIET yKa-
3aTh YCJIOBUsI HA BXOIHble JaHHBEIE 06paTHBIX 3anad (1)—(3), mpu KoTopbix omepaTtop A B
ypaBHeHUH (4) ob6nanaet TpeOyeMbIMH CBOHCTBAMH, HAMpHMep, SIBJSETCS KOMIaKTHBIM
HJIH COKUMAIOLIUM.

Bce ycsioBUSI OKa3bIBaeMbIX TEOpPeM CYLIECTBOBAHUSI W €IMHCTBEHHOCTH peLIeHHH
obpatubix 3ana4 (1)—(3) BbIMUCHIBAIOTCS B BUE JIETKO MPOBEPsieMbIX HepaBeHCTB. [1pu-
BOISITCSI HETPHBHA/bHbBIE MPUMEPbl KOHKPETHBIX OOpPATHBIX 3aay, AJsi KOTOPBIX TaKHe
YCJIOBUSI BBHITOJIHEHBI, & CJIeI0OBATENbHO, [/ HUX CIpaBel/UBbl JA0OKa3aHHbIE TEOPEMbl
CYLIECTBOBAHUS U €IMHCTBEHHOCTH pelleHHs.

Paota BeimosiHeHa nipu nongaepxke ABLIIT «Pa3BuTie HaydHOTO MOTEHILHala BbIC-
weii wkoJbl» (mpoekt 2.1.1/6827) u ®LII «HayuHble u HayyHO-TIefaroruueckue Kaaphl
uHHOBalMoHHo# Poccnu Ha 2009-2013 rr.» (mpoekt [1268).

Pemenue 3agau nasa audgepeHuaNtbHbIX YpaBHEHUA
rUnepooJUYECKOT0 TUIA METOAOM XapaKTepHCTHK

B. U. Kopsiok, U. C. Kosnosckas, E.C. Yeb

Benopycckuit rocynapcteeHHbl yHuBepcuteT, MuHck, Benapycb

BriBon ¢opmynnl Janambepa ajs 3amadu Kowiu a/s1 ofHOMEPHOT'0 BOJIHOBOTO YpaB-
HeHHsl — MeTOJ] XapaKTepUCTHK pellleHus 3afaud. MeTofoM XapaKTepUCTHK HaXOAUTCS
ofllee pelleHHe U pellleHue 3anaud Kowu /s nuHelHOro nuddepeHLHalbHOTO ypas-
HEHHs1 C YaCTHBIMH MPOM3BOAHBIMU mepBoro nopsiaka [l, c¢. 306-343]. dtum mertonom
HalJleHbl pellleHus 3aJa4u Kol [t MHOTHX APYTHX AH((epeHIHaNbHbIX yPaBHEHHH,
B TOM UHCJe W HelUHeHHBIX. DTo ypaBHeHusi [amuibToHa—SKOOH, KBasUJIUHEHHble
ypaBHEHHs MIePBOro Mopsiika U apyrue [2,3].

s runep6o/MuecKoro ypaBHeHHs MOPsAKa m C MOCTOSHHBIMH KO3(p@HULHeHTaMH
B cjyyae IBYX HE3aBHCHMBIX [IepeMeHHbIX t U &

H (aat B a(k)% n b(k)) u(t,z) = f(t,z) (1)
k=1

B aHAJHUTHUYECKOM BHUIE HaeTCd pelleHue 3aayqyu Komu. B ananuTtuyeckoMm Buie noJry-
YEHO pelleHHe 3aaayqyu Komiu u AJisT OMHOMEPHOTO TEJIEFpaq)HOI‘O YPpaBHEHHA

0u O?u  Ou
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B nosnynonoce @ = (0,00) x (0,!) nepeMeHHBIX ¢,z HaiileHbl PelleHHs CMELIaHHbIX
3anau [/ CTPOrO M HECTPOro OWBOJIHOBBIX ypaBHEHHH.

B Q paccMoTpeHBl cMelllaHHbBle 3afaul AJisl THIepOoIUYecKoro ypaBHeHus Buaa (1)
BTOPOT'O TOPSIKA.

J1/151 OIHOMEPHOTrO BOJIHOBOTO ypaBHEHHSI pPacCMOTPEHbI MHOrOTOUEUHblE 3a/la4yH, 3a-
Jau¥l YNpaBJeHUs] TPAHUYHBIMK YCJOBHIMH.

PaccMoTpeHbl HeKOTOpblE 3afauM He TOJbKO B MoJyrnosoce (), HO U B 006/1acTaX ¢
KPUBOJINHEHHBIME GOKOBBIMH IPaHHLAMH.

Merton nocTpoeHMs pellleHHH CMeIIaHHBIX M APYTHX 3aad COCTOUT B CJELYIONIEM.
C moMOIIbI0 XapaKTepUCTHK paccMaTpuBaeMast 06/1aCTb, B KOTOPOH 3afaeTcsl OCHOBHOE
ypaBHeHHe, pa3buBaeTcs Ha mopobsacTd. B xaxmo# u3 nomobaacteil U3 oblero petie-
HUSI HAXO[MM pelleHHe 3a1auH, COOTBETCTBYIOLIee UCXOMHON 3anaue. DTH pelleHUs Ha
rpaHULAX pasfiesa COIIacoBLIBAEM APYT C IPYroM TaKUM 06pa3oM, YTOOH! Pe3y/bTHPY-
[olllee pellleHHe OBbIIO JOCTATOUHO TMIAaAKHM H YAOBJIETBOPSJIO BCEM YCJOBUSIM MCXOMHOM
paccMaTpuBaeMol 33Ul U ee YPaBHEHHIO.

Cnucok aureparypsbl

[1] Epyrun H.II. Knura nas yrenusi no o6uiemy Kypey auddepeHHasbHBIX ypaBHe-
Huil. — MuHck: Hayka u texnuka, 1972.

[2] Tran D.V. The characteristic method and its generalizations for first-order
nonlinear partial differential equations. — Raton-London-New York—Washington:
Chapman & Hall/CRC, 2000.

[3] Kragler R. The method of inverse differential operators applied for the solution
of PDEs, Computer Algebra Systems in Teaching and Research. Differential
Equations, Dynamical Systems and Celestial Mechanics, Siedlce, 2011 — C. 79—
95.

I'pynnoBas kaaccudpukanus,
CUMMeTpUUHAas8 pelyKIUs U TOYHbIe pelieHus
HEJIMHENHOT0 ypaBHEHHUs] KOJIMOI'OPOBCKOTO THIIa

B. U. Narno!, B. N.Ctornmi?, H. B. Ctoruui?

MonTaBCcKMi HauMOHaNbHBIN Neaaroruyeckuit yHusepcutet, Montasa, YkpauHa
2HaumoHanbHbIM TexHUYecKkni yHuBepcuTeT YkpauHbl «KMW», Kues, YkpauHa

CooO6l1eH1e NOCBAIIEHO CHMMETPMHHOMY aHaJU3y HEJUHEHHOrO ypaBHEHHUS
Ut — Ugy — UlUy = f(u>7 (1)

KOTOpPO€ HallJNO LIMPOKHE TPUJIOKeHHs B 3aauaxX (PHHAHCOBOM MaTeMaTHKH, TEOpHH
11 Hy3HOHHBIX TIPOIIECCOB, TEOPHH CTOXACTHUECKOro KoHTpoJst [1,2].
[TonyueHsl crenyioliye pe3ynbTaThl.

(1) IlpoBenena rpynmnoBasi kaaccuuKauusi ypaBHeHus (1), corsacHo KOTOpod B 06-
leM cJy4yae OHO HMHBApUAHTHO OTHOCHUTEJbHO TpexMepHoH ajrebpsl JIu, 6asuc
KOTOPOH COCTaBJIAT onepaTopel Py = 0y, P1 = 05, P» = 0,. Pacmupenue cum-
MEeTPHUH BO3MOXKHO B CJEIYIOLINX Caydasx (HuxKe MpUBeNeHbl 3HaYeHUsT PYyHKLHH

f(u) B ypaBHenunu (1)):
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o exp(u);u™(m # 0,1,2) — anre6pbl HHBAPUAHTHOCTH YeThHIPEXMEPHEIE;
e u;u? + 1 — anre6psl MHBAPHAHTHOCTH MATHMEpPHBIE;

e u?;0;1 — anreGpbl MHBAPUAHTHOCTH LIECTHMEPHBIE.

(2) dns kaxkOoro U3 MoJyuyeHHBIX MHBApUAHTHBIX YpaBHEHHH NpoBefeHa KJiacCH(H-
Kalusl OHO- W JABYXMEpHBIX Moja/jredp asre6p CHMMETPUH, KOTOPHIM COOTBET-
CTByeT CUMMeTpUHHas pefyKUus K AU(hepeHHaNbHbIM YPABHEHUAM C MEHbLIUM
KOJTMYECTBOM HE3aBMCHMBIX NEepPEeMEHHbIX (B YacTHOCTH, K OOBIKHOBEHHBIM AH(D-
(pepeHIMAIBHBIM YPaBHEHHSIM).

(3) PesysmbraThl cUMMeTPHUHON PeNyKIMH UCIOJIb30BAHbI [JIsi TIOCTPOEHHUS psila WH-
BapHaHTHBIX pellleHHE ypaBHeHud Buaa (1).

Cnucok Jguteparypsbl
[1] Citti G., Pascucci A., Polidoro S. On the regularity of solutions to a nonlinear
ultraparabolic equation arising in mathematical finance, Differential Integral
Equations, 14, Ne 6. C. 701-738 (2001).
[2] Pascucci A., Polidoro S. On the Caushy problem for a nonlinear Kolmogorov
equations, SIAM J. Math. Anal., 35, Ne 3, C. 579-595 (2003).

06 oueHkax pemeHuil cucreMbl ypaBHeHul Ilpanaras
IJisi MUKPOHEOIHOPOIHOU CTPAaTU(PULUMPOBAHHOMN
MarHUTHOU KUIKOCTH

A. 0. Nlunkesuu', C.B. Cnupugonos?, I'. A. Yeukunn?
LYHuBepcuteTckuii konnepx Haperka, Hopserus
2MockoBCKHit rocyaapcTBeHHbIl yHusepcuTeT uM. M. B. JlomoHocosa

N3yuaetcsi moBeneHne CUAbHO CTPATU(HULUPOBAHHON MAarHUTHOH xKuAKocTH. MaJiblit
napameTp £ > 0 onpenensieT TOMIMHY cjoeB xkunkoctu. CorsnacHo Teopuu [Ipanntas,
JKUIKOCTb MOXKHO CYHMTATh BSI3KOH TOJIbKO B OKPECTHOCTH 00TEKaeMOro TeJja, rhe CH-
cremy ypaBHeHHH HaBbe—CTOKCa MOXKHO 3aMeHHUTb 00Jiee MPOCTOH CHCTEMOH

821,1/5 aug aus

u gy e, Ole wdU®  Ou.  Ov,
oy? ¢ Ox “ Oy

= 1
dr ' 0z Oy 0 )

= 0. (U® —u)—U

B o6sacti D = {0 < z < X,0 < y < 00} ¢ rpaHUUHBIMH YCJOBHAMU

us(ovy) = U(y)v UE(I,O) =0, 'UE(:C’O) = VE(I)? us(xay) - Uoo(x) npu y — O(;)

Ue(xvy)Bz(x)

3mech O (x,y) = > 0, 0. — MarHuTHasi IPOBOAUMOCTb XHUAKOCTH, B —

OpPTOrOHaJ/bHAsi K MOBEPXHOCTH 00TeKaeMOH MJIaCTHHBI KOMIIOHEHTA BEKTOpPA MarHHT-
HOM HHAYKLUHH, p = 1 — IJIOTHOCTb KUIKOCTH, (ue(z,y), ve(x,y)) — noje cKopocTeh
MOTOKAa XXHAKOCTH (mapaJiesnbHas ¥ OPTOrOHaJbHasi MJAaCTHHE KOMIOHEHTHI, COOTBET-
ctBeHHo), (U(y),0) — HavanbHast CKOPOCTb MOTOKa, (0, Vz(x)) — cKOpocTb Ha HHXKHEH
rpaHuLe paccMaTpuBaeMmoil obsactd, (U (x),0) — cKOPOCTb Ha BepxHel TpaHHLE.
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3agaya

0?u Ou ou oo dU>®  Ou  Ov

d:C’ %4_@20 (3)

B obaactu D ¢ F'PaHUYHBIMH YCJIOBUSAMU

w(0,y) =U(y), wu(z,0)=0, v(z,0)=V(x), wulz,y)— U>(x) npu y— ooi4)

rue
Ve(@) = V(x),  b(x,y) = 6(z,y) npu e—0,

sIBJIsIETCS1 yCpeAHeHHOH 3anadell a5 3afauu (1) U MMeeT MecCTo ciefyloliee yTBEPKae-
HHE.

Teopema. [Iycmeo

0 -0 < , _ dz| < .
(Jmax |0e(2,9) = 0(@,y)l < Cos, - max / (Ve(z) = V(2)) dx| < Cye
0

Tozda 0rs a06o2o N > 0 cywecmsyem makoe C > 0, umo 8oinOAHAEMCS OUYEHKA

max  |y/ue — vu| < Ce:z,
(z,y)€DN
ede Dy = DN{y < N}, ede u. ydosaemsopsem 3adaue (1), (2), a u ydosaemsopsem
3adaue (3), (4).

Pafora BTOpOro U TpeTbero aBTOPOB YaCTHYHO mopaepkaHa rpantom PODU (mpo-
ext 09-01-00353).

Hosgbie BAapHAHTHI IIPAHLOMXIIA KOMHeHCI/IpOBaHHOﬁ
KOMIIAKTHOCTHU U UX MPUJOIKECHUA

C.E. MNMactyxoBa
MOCKOBCKWM MHCTUTYT pafgHOTEXHUKH, INEKTPOHUKU U aBTOMaTUKK, MockBa, Poccus

B paborax [1-6] 6bliM ycTaHOBJIEHB HOBble BAapUAHThI MPUHIKIA KOMIEHCHPOBAH-
HOHM KOMIIaKTHOCTH, KOTOpble HAlJW NMPHMeHeHHe B TEOPUH Pa3PEeLIMMOCTH Pa3JHUHBIX
3JIJIMIITHUECKHUX U NapaboJUUeCKUX ypaBHEHHH C HeCTAaHAAPTHBIMH YCJOBHSIMH POCTa,
a takxe cucreM HaBpe—Crokca AJs1 HeCXKMMaeMOH HEHBIOTOHOBOH JKHAKOCTH, CTa-
MOHAPHOH M HecTalHOHapHOH. [l/f yKa3aHHBIX ypaBHEHWH pelleHHe CTPOUTCS Kak
npenes MpUOIHKEeHUH (raJepKHUHCKHX TPUOJHKEHHE WM PEIleHHH peryssipusoBaHHOM
3anaun). s o60CHOBaHHS MPOLEAYPbl MPeNesbHOTO Mepexoia HeoOXOOUMO YCTaHO-
BUTb CXOIMMOCTb MOTOKOB K MOTOKY. 3/1eCb Mbl UMeeM JeJ0 C MOCJeN0BaTeNbHOCTbIO
MIOTOKOB, KOTOpas NpeacTaBjsieT cOO0H HeJuHeHHYIO (YHKLHUIO OT cnado cxonsileHcs
10CJIe10BaTeJbHOCTH NPUO/IHKEHHBIX rpafueHToB. g vieHTH(UKAUUK Npelesa IO-
CJ1e[10BaTeIbHOCTH NTOTOKOB HEIOCTATOYHO KJIaCCUYECKHUX CO00paKeHUH MOHOTOHHOCTH.
Ha sTom 3Tane nogxonsiive JeMMbl O KOMIIEHCUPOBAHHON KOMIAKTHOCTH MIpaloT KJiO-
4eBYyI0 POJb.
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Cnucok autepartypsbl
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Crparerus rapaHTupylolero ynpasjaeHusi cmyckom KA
¥ BBOJAOM B JI€HCTBUE HCCJEI0BATEJbCKUX 30HIOB B
YCJOBUSX HeOolNpeaeJeHHOCTU NMapaMeTpoB aTtMmocdep
UCcJielyeMbIX MJIaHeT

K. M. Muuxapse, M. b. MaptbiHoB, B. A. BopoHuos, B. B. Manbiwes,
B. E. Ycauos, [1. B. Mepkynos, C. H. AnekcawkuH, C. B. UBaHos,
P.4Y. Tapramapae
HMO um. C.A. JlaBoukuHa, Xumku, Poccus

B HacToslee BpeMsi npu (hOPMHUPOBAHHH MPOEKTHOro OBJHKA HCCIAEN0BATENbCKUX
KA Hapsiny ¢ 3agauamu 10 H3y4eHHIO TOBepXHOCTH MuaHeT CoJTHEUHOH cCHCTeMBl 0coboe
BHHUMAaHHUe yfeJssieTcs [eTaJbHOMY M3yUEHHUIO CBOHCTB aTMOC(ephbl HccaefyeMol MiaHe-
TBl C MMOMOIIBIO CMEHHAJIbHBIX 30HI0B.

Hanpumep, B nporpamme IJIUTEbHOTO U3Y4YeHHs NyaHeThl BeHepa miisi KOHTAKTHBIX
UCCJ/IeI0BaHUH aTMOC(epbl IpeAnoaraeTes UCoab30BaTh aTMOC(EPHbIH 30H — BETPO-
JIeT, TIPUHLMI AEHCTBUS KOTOPOIO OCHOBAH Ha MCIOJb30BAaHUH €CTECTBEHHBIX YCJOBUH
aTMoc(epsl Ha TJaHEeTe: HaJW4Ms TOCTOSTHHOTO BETPa U CYLIECTBOBAHHE YCTOHUHBO-
ro rpagueHTta BeTpa Mo BeicoTe. J[Be a’spoguHaMHUeCKHe MOBEPXHOCTH, COEIHHEHHBIE
(ajsioM pasHOCATCS Ha pa3Hble BHICOTHI, & M3MeHeHMe IJMHBI (aja MO3BOJSIET MEHSTb
BHICOTY Apelda HayuyHOH ammapaTtypel B atMocepe. BBon B neficTBUe BeTpoJsieTa mpef-
noJiaraetcsi MmapasjesibHO co CryckoM ocHoBHoro KA Ha moBepxHOCTb muaHeThl. [lpu
5TOM Ha YCJIOBHSl BBOJA HAKJAIbIBAIOTCS OIpelesieHHble OrpaHUUYeHHs], HEBBINOJHEHNE
KOTOPBIX M3-33 HEy4YeTa OTHOCHUTEJIBHO IIUPOKHUX MIPeesOB HEONPEAEJEeHHOCTH NapaMeT-
poB aTMoc(ephl BeleT K pa3pylUeHHIO 30HJa, W, CJeL0BaTe/]bHO, K Heyjaue KCIepHu-
MeHTa.

B cBsi3u ¢ 3TUM npeasiaraeTcs NpUMeHeHHe rapaHTHUPYIOLEH CTPaTeruy ynpaBJeHus
CIIyCKOM, B OCHOBE KOTOPOH JIEXKHUT <«HUI'DOBOH» MOAXOA K (DOPMHPOBAHUIO HeoIlpele-
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JIEHHbIX BO3[EeHCTBUU Ha CIyCKaeMbld anmnapar B IpPOLlecCe ero aspoaWHaMHUYeCKOro
TOPMOXKEeHHS.

CyTb DAHHOrO MOAXONA 3aKJIYAeTCsl B NPENTNOJNOKEHUH, UTO 3HAYeHHe MOIeNHpye-
Moro (akTopa 3aKJ/IUeHO B HEKOTOpHIX MpelesaX Tak Has3blBaeMOH 00JacTH Heolpe-
LeJIeHHOCTH, KOTOpasi 3alaeTcsl CBOMMM TIpaHMLlaMH. B 3ToM ciydyae npu pelleHHH
KaKHUX-JIMO0 ONTUMH3ALHOHHBIX WJH MPENeJbHBEIX 33[a4 M3 BCEX BO3MOXKHBIX peasn3a-
LU HeollpeJesieHHOro (hakTopa paccMaTPUBaeTcsl Ta peanusanus (13 o6JacTH Heompe-
LeJIEHHOCTH), KOTOpPasi HAUXYIIIKUM 00pa3oM CKaXKeTCs Ha HCC/EAYEMbIX MOKa3aTeJsix
(HampuMep, Ha KPUTEPUH ONTHMAJIbHOCTH).

BrinonHeHMe Bcex HakKJaJblBaeMblX OrpaHUYEHHMH MPH HAUXYOIIMX peau3alusx
HeorpeJle/leHHbIX BO3JeHCTBUH OyneT 03HauaTb rapaHTHPOBAHHOE BLINOJHEHHE AaHHBIX
OTpaHHUYEHUH MPH JMI0OBIX BO3MOXKHBIX PeajM3alUsX 3TUX BO3LEHCTBUH.

JI7s1 oATBepK/AeHUS TapaHTHH UCKOMOTO pe3yJ/bTaTa IpejJ/araeTcs THIoTeTHYeCKoe
CTaTHCTHUECKOe MOJEJNHPOBAHHE CIYCKa, B OCHOBY KOTOPOTIO IOJIOXKEeH KOMOMHHPOBaH-
HbIH BapHaHT ydeTa HeoIpejie/leHHOCTH. B 3ToM ciydae o6sacTb HeolpeseeHHOCTH
«3aI0JIHSETCS» THIOTeTHUeCKUMH BepOSITHOCTHBIMU XapaKTepUCTHKaMH, [0Jy4YeHHbIMH
AJs mofoOHbIX (pusnueckux ycjoBud. Hanpumep, xorma o6macTv HeollpelesleHHOCTH,
XapakTepHble JJ151 TapaMeTpPoB aTMOC(eph! MIaHEeThl, «3aMoJHIITCS» BePOSTHOCTHBIMU
XapaKTepUCTHKaMHU MOBeJeHHs COOTBETCTBYIOLIMX 3EMHBIX I1apaMeTpoB aTMOC(epbl.

K npob6aeme yceyeHusl HeMOYKHU ypaBHEHUN

E. B. PagkeBuu
MockoBckui rocynapctBeHHbli yHUBepcuTeT UM. M. B. JlomoHocoBa, MockBa, Poccus

Bo mHorux (husHueckux 3amauax BO3HHKaeT npobiema yceuernus (0OpbiBa) LEMOY-
KW ypaBHeHHH, Mofesupyiolled npouecc. Bormpoc B ToM, Kak omnpenessiTb KOppeKT-
HOCTb TaKOI'0 ycedeHHs. DTO OJHA M3 CTAaHAAPTHbIX 3afay AJs CHCTEM MOMEHTHBIX
annpoKCHMallUid KHHeTHUeCKHX ypaBHeHUH ¢ OGeCKOHeYHOH Lenoukod ypaBHeHHH. s
JIMHeapu3aluHl B OKPECTHOCTH COCTOSIHUSI paBHOBecHs 26-MOMeHTHOH cucteMsl I'paaa,
BBIUMCJIEHHOH [J151 MosieKysn MakcBeda, 6yeT 10Ka3aHO CYIeCTBOBAHHE KOPPEKTHOTO
no YenmaHy ycedyeHus cMelllaHHOH 3aia4yu. Bosee Toro, 6yneT mokasaHo, uTo MmepeMeH-
HBIMHM YCEUEeHHs SIBJSIOTCS THAPOAMHAMHUYECKHe IepeMeHHble (IJIOTHOCTb, CKOPOCTb,
TeMIepaTypa) U TeIJIOBOH MOTOK, YTO NaeT BO3MOXKHOCTb HCIOJb30BaTh KaK TPaHHY-
Hble YCJIOBUS JJISI yceyeHHsl (DU3MUeCKH omNpaBjaHHble KpaeBble ycjoBus. IlocsenHee
M03BOJIUJIO CMOZENUPOBaTh 3(h(heKThl MIocKoro TeyeHus Kysrra.

Cnucok aureparypsbl
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Mertop JIanaaca
B pelleHNH HeJMHEWHbIX YpaBHEHUN YPbICOHA

0. A. Xasoea, B. A. JlykbsiHeHKO

TaBpuueckuit HauuoHanbHbIH yHUBepcuTeT, Cumdbepononb, YkpauHa

3agaud IUCTAHIMOHHOIO 30HAWPOBAHUS MOBEPXHOCTH TMPUBOAST K BOCCTAHOBJEHHUIO
pelleHHH cHCcTeM HeJHMHeHHBIX MHTerpoirddepeHLHalbHbIX YpaBHEHUH THMA YpblCOHA
NepBOro poja ¢ AesnbTao6pasHbIMU siapaMu. Haubonbmnii BK/1a B NpaBylo 4acTb BHOCAT
KPUTHYeCKHe TOUKH, M03TOMY [J/15 NPUOJIMKEHHOTO pelleHHs] 3TUX ypaBHEHHH NMpUMe-
HUMbl aCHMITOTHUECKHE MeTonbl. B mepBoM mNpHO/MKEHHH HHTerponudgepeHIranb-
HbIH omepartop (pery/Jsipi30BaHHOE ypaBHEHHE WJIM PEry/spu3HUpYyOIUE (YHKLHOHA)
3aMeHsieTCs aCUMITOTHYECKUM IMpeACTaBJeHHEM, YTOUYHAETCS pelleHHe UTePaLUOHHO.
B psine nmpuksagHbIX 3ajad AOCTATOYHO OMPAHHUYMTHCS MOMCKOM TOJIBKO XapaKTepHbIX
TOUeK pellleHust (HampuMep, SKCTpeMaJsbHbIX). B aToM ciyuae, mpu HaJIHUUK alipHOPHON
HUH(pOpPMAaLIUH, MOXKHO MOJYUYHUTh 3((eKTUBHbIE aJrOPUTMbl — HAaNpHUMep, B 3afaye BOC-
CTAQHOBJIEHUS] XapaKTepPHBIX TOUEK pelleHUs /5 CUCTeMBl HHTerpoauddepeHInaabHbIX
YPaBHEHUH NEepBOro poja BUAA

b 2
/fk(s,z(s),z’(s))exp <—)\(t _ iRk(z(s)))> ds = un(t), k=12,

Ri(2) = (M = 2(s)? + (s — ax)?)

rie fr > 0 — gocTaTouHOE YMCJIO0 pa3 HelpepbBHO AuddepeHurpyeMas GyHKLUSA, A >>
1 — napamerp, H >> 1, ¢, M, a1, as— QuxkcHpoBaHHble uynucaa, Ri(z) # 0.
[Ipenmnonaras cyiiecTBOBaHHE pelleHHs CHCTEMbI z(s) MpH 3afaHHbIX uk(t), k=1,2,
HaXO[IMM pelleHHe U3 CUCTEeMbl YPABHEHHUH, MOoJy4aeMOd 3aMeHOH MHTerpajoB M0 MeTo-
ny Jlansaca, v mpeanosoxkeHUst 0 GIM30CTH CTALlMOHAPHBIX Touek z(s) U Ry(z).

B kauecTBe mpumepa OyneM paccMaTpUBaTb HeJMHEHHOE HHTerpajbHOE ypaBHEHHE
BHIA

b
/f(s)n(t —z(8))ds =u(t), c<t<d, (1)

rae f(s) — usBecTHasi GpyHKUMsA, u(t) — 3agaHHas GYHKUHS, z(s) — UCKOMast (PyHKUHUS

C SIAPOM CJIeyIOLIero BHAA:
n(t) =4/ ﬁefﬁtg. (2)
77

Anpo sBasiercst nenbraobpasueiM: n(t) — 4(t) npu B — oo; 3T0 MO3BONsAET GoJee
3(h(peKTHUBHO peluaTh 3a1auy HaXOXKAEHHs XapaKTePUCTHYECKUX TOUEK.

I[IprMeHHM K aHa/u3y ypaBHeHHs MeTon Jlarsiaca v HalileM KpPUTHUECKHe TOUKH Y
HeU3BeCTHOH (DYHKUMH 2(S) M0 KPUTHUECKUM TOUYKaM u(t).
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O6osnaunm (t — 2(s))? uepes S(t, s).
Pasanunbiit Bkaan B (1), (2) BHOCAT cleqyiolife TOUKH:

(1) Toukwu, B koTOpBIX S’(t,8) = 0;
(2) KOHIBI MPOMEXKYTKOB HHTETPUPOBAHUS,
(3) rtouku, B KOTOPBIX S(t,5) = 0.

HauGonblunii BK/JIaA B MPaBYIo YacTh ypaBHeHHs (2) BHOCHTCS, Koraa cama QyHKLIHUs
S(t,s), 1 ee NPOU3BOIHbIE PABHBI HYJIIO.

S(t,s) = (t—2(s))?> =0, ecu t — 2(s) = 0.

B 3aBucuMocTH OT QyHKLUHHK z($) BbipaxkeHHe t—z(s) = 0 MOXKET He UMeTb pelleHHH,
MMeTb OfHO WJIH HECKOJIbKO peIleHHE.

Hanee, S'(t,s) =2(t — 2(s))2'(s) =0, ecin t — z(s) = 0 uan 2'(s) = 0.

B 3aBHCHMOCTH OT TOYeK ¢ BO3MOXKHBI Pas3JjMuHble Clydad HCIOJb30BaHHs acCHMI-
TOTHYECKUX (HOPMYJI J/Is1 PelleHHsI HCXOLHOrO ypaBHEeHHS.

3ametum, uto S”(t,s) = —22"%(s)+2(t—2(s))2"(s) = 0, ecam 2’(s) = 0; t—2(s) =
0 wu 2'(s) =0; 2"(s)=0.

Ecsu ¢ takoso, uto S’(t,s) =0, to S”(t,s) = 0.
[lponomkasi Mo aHaJOTHH, MOJyYaeM: S (t,s) =
2(5))2™M(s) = 0, ecan 2/(s) = 0; t— z(s) = 0 um 2'(s )
2 D(s) =0; 2M(s) =0, mm 2"V (s) =0; t—2(s) =
B stom cayuae S'(t,s) = S"(t,s) = ... = SM(t,s) = 0.
Jlnst uaterpasnos takoro Buaa ussectho ( [1, c¢. 28]), uro yHkuMS

nz'(s)2""V(s) + 2(t -
= 0; z(")( ) =0, i
0.

b
/f(s)e’\s(t’s)ds =u(\t) 3)

pU A — 0O UMEET CJEAYIOULYI0 aCUMITOTHKY:

2

W) =1\ 357 o)

S(S7t)f(807 t) + O()‘_l)ﬂ
rae so — TOuKa Makcumyma S(s,t).

[MonbiHTerpanbHas QyHKIHS UMEET MPU GOJIBIIMX A Pe3KHH MakCHMyM (T. €. HHTe-
rpaJi 1o OTPEe3KY [a, b] MOKHO MPUOJIHKEHHO 3aMEHUTh HHTETPAJIOM 110 MAJIOH OKPECTHO-
CTH TOYKH MakCMMyMa), H B OKPECTHOCTH TOYKH MaKCHMyMa MOABIHTErPAbHYIO0 (yHK-
LMI0 MOXKHO 3aMeHHTb GoJjiee MPOCTOH.

Ecau S(t,s) = (t — 2(s))?, To S”(t,s0) = 2'(s0)?, npuueM so TakoBa, 4To z(sg) =t
(mpennonaraem, uto z'(sg) # 0). Torna

V2r
VA (so]

Ilns t rénn (t — 2(5))? # 0 umeem cootHomenue u(t) = o(A~>).

u(A ) = f(s0) +o(A7H).

[IpennosoXum, uTo AJs1 (PUKCHPOBAHHOTO ¢ CYLIECTBYIOT KOPHH S1,S2, ..., Sp YPaB-
HeHUs1 z(S) = ¢ ¥ BCe OHH SIBJISIIOTCS MPOCTHIMM, MPHYEM HU OfHA M3 3ITHX TOUEK
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He fIBJISIeTCS I'PaHUYHOH TOUKOH oTpeska [a,b]. Torna nMeeT MeCTO acHMMTOTHUYECKOe

npencTaBJ/eHUe
u(t) = A" /r ( 1>> :
k=1

Ecau niist BEIOPAaHHOTO ¢ CyLLECTBYeT eAHHCTBEHHBIH KPATHBIH KOPEHb S ypaBHEHHs
z(s) =t kpatHocTH 1, Tako# uto 2/(5) =0, 2”(5) #0, To

rae I'(x) — ramma-QyHKLHS.

[Ipu ycnoBum, uto f(s) — MOJOKHUTENbHAS HEMPEPHIBHAS MENJIEHHO MEHSIOIAsiCst
(GyHKUHs, monydyaeM, 4to (GyHKuus u(t) MPHHUMAET MAKCHMAJIbHbIe SHAueHHS B TOU-
Kax, JeKallkX B OKPECTHOCTH MOPAAKA A~ 1 TOueK t JLJISI KOTOPBIX CYIIECTBYeT CTallu-
oHapHasi TOUKa § hyHKIHH z(s), Takast uTo z(3) = ¢. TakkM 06Pa3oM, C MOrPELIHOCThIO
£~% Qynkuus u(t) NPUHHMAET MaKCHMAJbHble 3HAYEHHS B TOUKAX f, A/ KOTODBIX
CYIIeCTBYeT CTallMOHAPHAS TOYKA § GYHKUMU z(s) Takas, uto z(5) = t.

AHanoruuHo, mycTh [a,b] — KOHEUHBIH OTPE30K U BHIIIOJHEHBI CAEYIOLIHE YCIOBHUS:

(1) max S(t,s) mocTuraeTcsi TOJMbKO B TOUKE § = a;
s€la,

(2) f(s),S(ts) € C([a,b]);
(3) f(s),S(t,s) € C* npu s, 6inskux K a U S'(t,a) #0, 1. e. z(a) #1t,2'(a) # 0,

npu  — oo, (3 € S.— £-0KpecTHOCThb

u(t) ~ ePt==(@) Z B3R

k=0

KosdduiuueHTsl ¢, UMEIOT BUA:

7(s) |
— _M* YV . —
¢ (St 9= ()~ 2(9))
DTOo pas/okKeHHe MOXKHO Au(depeHuupoBarh Mo 3 J060e YKCI0 pas.

[Tono6Hble acUMNTOTHYECKHE (HOPMYJbl UMEIOT MECTO U B JIBYMEPHOM cJayyae. IDTH
(opMyJsBl MO3BOJSIOT MOIYYaTh XapaKTepHble TOUKH peLleHHs] U B JPYTHX CJaydasx.
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Boiuuciaenne audggepeHuualbHbIX UHBAPUAHTOB
0OBIKHOBEHHOT0 IU(p(epeHIInaIbHOI0 YPaBHEHUS

A. M. LUenexos

TeepckoM rocyaapcTBeHHbIM yHUBepcuTeT, Teepb, Poccus

oY y = f(x,y) onpemensieT Ha MJIOCKOCTH aleKBaTHHIH reOMETPUYECKUi 00b-
€KT — TPH-TKaHb, 00pPa30BaHHYIO J€KAPTOBOH CETbI0 U HHTErPaJbHBIMU KPUBBIMU 3TOTO
ypaBHeHHs. MBI paccMaTprUBaeM TPU-TKaHH C TOUHOCTBIO 10 3aMeHbl TapaMeTpoB Ha Ga-
3ax CJOeHWH TKaHu. KaxIplli Kjgacc TKaHel — a, CJIeJ0BaTEeNbHO, ¥ COOTBETCTBYIOMIHNH
kyaacc OJIY — xapakrepuayercs cucTeMol nuddepeHHalbHbIX UHBapHaHToB. OHU Mo-
JyJaroTes caenyomumM o6pazom. C TpU-TKaHbIO KAHOHHYECKUM 00pa30M acCOLMUPYeTCs
HekoTOpasi apUHHAs CBA3HOCTh, Ha3biBaeMasi CBsI3HOCTbI0 UepHa. KpuBu3Ha 3ToOH cBs3-
HOCTH b M ee KOBapHaHTHbIE MPOW3BOIHBIE PA3HBIX MOPSAKOB by, by, b11,b12,bo1, bas, . ..
SIBJISIIOTCS OTHOCHUTEJIbHBIMM HHBapUaHTaMH. M3 HUX cTposATcs abCO/IOTHBIE MHBAapHaH-
Thl. KpUBH3HA b BbIpaXKaeTcsi uepe3 uacTHble MPOU3BOAHbBIE 0 BTOPOrO MOPSAKA BKJIIO-
YUTEJbHO OT (DYHKIUH f, ee KOBApPUAHTHbBIE IPOU3BOJHbIE — Uepe3 NPOU3BOJHbIE CJIENy-
roux nopsiikoB. Hanpumep, ycsoBue b = 0 Boiaessier knacc OLY ¢ pasnensiomnMucs
nepemeHHbIMH. JluHeitHOe ypaBHeHue y' +yf(x) = g(x) xapakTepusyercs C/IeLyOLIUMH
COOTHOILIEHHSI Ha OTHOCHTE/IbHbIE HHBAPUAHTHI: bbos — (b2)? =0,  bbyy — biby — b3 = 0;
ypasHenue Pukkatu y' = f(z)y* + g(z)y + h(x) — cooTHOWEHHEM baoob — baobs = 0.
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IIpsiMmble u oOpaTHBbIE CIieKTpaJbHbIE 3a4a4YH
nasa oneparopa llrypma—JInyBunns
B mKaJjax npocrpancts CoboJjeBa

A. A. Wkanukos

MockoBckui rocynapcTeeHHbl yHuBepcuteT M. M. B. JlomoHocoBa, Mockea, Poccus

KnaccuueckuM HaGopaM CleKTpasbHbIX JAaHHBIX, KOTOpPble OOBIYHO pPacCMaTpPHUBAIOT-
Csl TIPH pellleHUH OOpATHBEIX 3afiau, MBI CTABUM B COOTBETCTBME CIelMa/bHblE LIKaJbl
TUBOEPTOBBIX NIPOCTPAHCTB, B KOTOPblE TMOMEILAIOTCS 3TH CIEKTpa/bHble NaHHBE. DTO
IaeT BO3MOKHOCTb KOPPEKTHO OIpeJe/IUTh HeJlHHelHble 0TOOpaKeHHus!, CTaBsIIHe B CO-
OTBETCTBHE IIOTeHLHaaM U3 npocTpaHcTB CobosieBa Ha0OpH! CHEKTPaJbHBIX AAaHHbBIX
U3 NOCTPOEHHBIX NpocTpaHcTB. IIpu Takoll nmoctaHoBKe pellleHHe 0OpaTHBHIX 3a4ad CBO-
AWTCS K TOUHOMY OIHCaHHI0 o6pasa oToOpakeHnH. OMHAKO SI3BIK TEOPUH OTOOpaXKeHHH
T03BOJISIET JOOUTHCS HOBBIX PE3Y/NbTAaTOB, B Y4CTHOCTH, MOJYUYHTb PABHOMEPHBIE AIpH-
OpHble OLIEHKH AJIfl PSIMBIX U 00paTHBIX 0TOOpaKeHUH, KOTOpEle paHee He OBLIN M3BeCT-
Hbl 1JI51 KJlaccH4ecKuX 3afad. [TosydeHHble pe3ysnbTaThl MO3BOJSIOT PELIHTb MPOOJIeMy
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